Меню

Что такое размер таблицы mac адресов



10. Конфигурирование таблицы MAC-адресов

Таблица MAC — это таблица соответствий между MAC-адресами устройств назначения и портами коммутатора. MAC-адреса могут быть статические и динамические. Статические MAC-адреса настраиваются пользователем вручную, имеют наивысший приоритет, хранятся постоянно и не могут быть перезаписаны динамическими MAC-адресами. MAC-адреса — это записи, полученные коммутатором в пересылке кадров данных, и хранятся в течение ограниченного периода времени. Когда коммутатор получает кадр данных для дальнейшей передачи, он сохраняет MAC-адрес кадра данных вместе с соответствующим ему портом назначения. Когда MAC-таблица опрашивается для поиска MAC-адреса назначения, при нахождении нужного адреса кадр данных отправляется на соответствующий порт, иначе коммутатор отправляет кадр на широковещательный домен. Если динамический MAC-адрес не встречается в принятых кадрах данных длительное время, запись о нем будет удалена из MAC-таблицы коммутатора.

Возможны 2 операции с таблицей MAC-адресов:

1. Поиск MAC-адреса;
2. Пересылка или фильтрация кадра данных в соответствии с таблицей.

10.1.1. Получение таблицы MAC-адресов

Таблица MAC-адресов может быть создана динамически или статически. Статическая конфигурация заключается в ручной настройке соответствия между MAC-адресами и портами. Динамическое обучение — это процесс, в котором коммутатор изучает соответствие между MAC-адресами и портами и регулярно обновляет таблицу MAC. В этом разделе мы рассмотрим процесс динамического обучения MAC-таблицы.

Рисунок 28.1 — Динамическое обучение MAC-таблицы.

Топология на Рисунке 28.1: 4 ПК подключены к коммутатору. ПК1 и ПК2 подключены из одного физического сегмента (домена коллизий) подключены к порту коммутатора Ethernet 1/0/5, а ПК3 и ПК4, также из одного физического сегмента, подключены к порту Ethernet 1/0/12.

Начальная таблица MAC-адресов не содержит записей. Рассмотрим пример обмена кадрами между ПК1 и ПК3 и процесс обучения MAC-адресов:

Когда ПК1 отправляет кадр к ПК3, MAC-адрес источника 00-01-11-11-11-11 из этого сообщения, а также порт коммутатора Ethernet 1/0/5 заносятся в MAC-таблицу;

В это же время коммутатор определяет, что сообщение предназначено для 00-01-33-33-33-33, а поскольку MAC-таблица содержит только запись соответствия MAC-адреса 00-01-11-11-11-11 и порта Ethernet 1/0/5, коммутатор передает это сообщение всем портам коммутатора (при условии, что все порты принадлежат VLAN 1 по-умолчанию);

ПК3 и ПК4, подключенные к порту Ethernet 1/0/12, получают кадр, отправленный ПК1, но так как MAC-адрес назначения 00-01-33-33-33-33, ПК4 не отвечает, только ПК3 отвечает ПК1. Когда порт Ethernet 1/0/12 принимает кадр от ПК3, в таблице MAC-адресов создается запись соответствия адреса 00-01-33-33-33-33 порту Ethernet 1/0/12.

Теперь таблица MAC-адресов имеет 2 записи: адрес 00-01-11-11-11-11 — порт Ethernet 1/0/5 и адрес 00-01-33-33-33-33 — порт Ethernet 1/0/12.

После обмена кадрами между ПК1 и ПК3, коммутатор больше не получает кадры от ПК1 и ПК3. Поэтому записи соответствия MAC-адресов в MAC-таблице удаляются через 300 или 600 секунд (простое или двойне время жизни). По-умолчанию выбрано время жизни в 300 секунд, но оно может быть изменено на коммутаторе.

10.1.2. Пересылка или фильтрация

Коммутатор может переслать или отфильтровать принятые кадры данных в соответствии с таблицей MAC-адресов. Рассмотрим пример на рисунке 28.1: допустим, что коммутатор изучил MAC-адреса ПК1 и ПК3, а пользователь вручную добавил соответствия для MAC-адресов ПК2 и ПК4. Таблица MAC-адресов будет выглядеть следующим образом:

MAC-адрес

Номер порта

Способ добавления

Пересылка данных в соответствии с таблицей MAC-адресов:
Если ПК 1 отправит кадр к ПК 3, коммутатор пересылает принятый кадр данных с порта 1/0/5 в порт 1/0/12.

2. Фильтрация в соответствии с таблицей MAC-адресов: Если ПК 1 отправит кадр к ПК 2, коммутатор, проверив таблицу MAC-адресов, находит ПК 2 в том же физическом сегменте, что и ПК 1 — коммутатор отбрасывает этот кадр.

Коммутатором могут пересылаться 3 типа кадров:

Широковещательные. Коммутатор может определять коллизии в домене, но не в широковещательном. Если VLAN не определена, все устройства, подключенные к коммутатору, находятся в одном широковещательном домене. Когда коммутатор получает широковещательный кадр, он передает кадр во все порты. Если на коммутаторе настроены VLAN, таблица MAC-адресов соответствующим образом адаптирована для добавления информации о VLAN и широковещательные кадры будут пересылаться только в те порты, в которых настроена данная VLAN.

Многоадресные. Если многоадресный домен неизвестен, коммутатор пересылает многоадресный кадр как широковещательный. Если на коммутаторе включен IGMP-snooping и сконфигурирована многоадресная группа, коммутатор будет пересылать многоадресный кадр только портам этой группы.

Одноадресные. Если на коммутаторе не настроена VLAN, коммутатор ищет MAC-адрес назначения в таблице MAC-адресов и отправляет кадр на соответствующий порт. Если соответствие MAC-адреса и порта не найдено в таблице MAC-адресов, коммутатор пересылает одноадресный кадр как широковещательный. Если на коммутаторе настроен VLAN, коммутатор пересылает кадр только в этом VLAN. Если в таблице MAС-адресов найдено соответствие для VLAN, отличного от того, в котором был принят кадр, коммутатор пересылает кадр широковещательно в том VLAN, в котором кадр был принят.

10.2. Конфигурация таблицы MAC-адресов.

Настройка времени жизни MAC-адреса

Настройка статической пересылки и фильтрации

Очистка таблицы MAС-адресов

Обучение таблицы MAС-адресов через CPU

Настройка времени жизни MAC-адреса

Команда

Описание

no mac-address-table aging-time

! В режиме глобальной конфигурации

Настройка времени жизни MAC-адреса

Применение настроек по-умолчанию

2. Настройка статической пересылки и фильтрации

Команда

Описание

mac-address-table address vlan [interface ethernet ] | [source|destination|both]

no mac-address-table [address ] [vlan ][interface ethernet ]

! В режиме глобальной конфигурации

Настройка статических записей и фильтрации

Удаление статических записей и фильтрации

l2-address-table static-multicast address < | >vlan

no l2-address-table static-multicast address < | >vlan

! В режиме глобальной конфигурации

Настройка статической записи Многоадресного MAC-адреса

Удаление статической записи Многоадресного MAC-адреса

3. Очистка таблицы MAС-адресов

Команда

Описание

clear mac-address-table dynamic [address ] [vlan ] [interface [ethernet | portchannel] ]

Читайте также:  Цска последний матч таблица

! В режиме глобальной конфигурации

Очистка динамических записей в таблице MAC-адресов.

4. Обучение таблицы MAС-адресов через CPU

Команда

Описание

no mac-address-learning cpu-control

! В режиме глобальной конфигурации

Включение функции обучения MAC-адресов через CPU.

Отключение функции обучения MAC-адресов через CPU.

! В привилегированном режиме

Отображение коллизий в таблице MAC-адресов

! В режиме глобальной конфигурации

Очистка коллизий в таблице MAC-адресов

10.3. Пример конфигурации таблицы MAC-адресов

Рисунок 28.2 — Пример конфигурации таблицы MAC-адресов

Как показано на рисунке 28-2, ПК1 — 4 подключены к портам коммутатора 1/0/5, 1/0/7, 1/0/9, 1/0/11, все ПК помещены во VLAN 1 по-умолчанию. ПК 1 хранит конфиденциальные данные и недоступен для ПК из других физических сегментов. ПК 1 и ПК 2 статически приписаны к портам 7 и 9 соответственно.

1. Настроить MAC-адрес как фильтруемый:

2. Настроить статические соответствия ПК 2 и ПК 3 портам 1/0/7 и 1/0/9

10.4. Решение проблем при конфигурации таблицы MAC-адресов

Если с помощью команды ‘show mac-address-table’ обнаруживается, что коммутатор не смог создать динамическое соответствие между MAC-адресом и портом, возможные причины:

Подключенный кабель поврежден;

На порту включен Spanning Tree и порт находится в состоянии “discarding” или устройство только что подключено к порту, а Spanning Tree находится в состоянии вычисления дерева;

В остальных случаях проверьте порт коммутатора и обратитесь в техническую поддержку для решения проблемы

10.5. Уведомления об изменениях в MAC-таблице

Данная функция позволяет уведомлять администратора об изменениях в таблице MAC-адресов с помощью SNMP trap.

10.5.1. Настройка уведомлений об изменениях в MAC-таблице

Включение SNMP-функции уведомления об изменениях в MAC-таблице глобально

Включение уведомления об изменениях в MAC-таблице глобально

Настройка интервала отправки уведомления об изменениях в MAC-таблице

Настройка размера истории таблицы

Настройка типа события для отправки SNMP-trap

Просмотр конфигурации и данных

Включение SNMP-функции уведомления об изменениях в MAC-таблице глобально

Команда

Описание

snmp-server enable traps mac-notification

no snmp-server enable traps mac-notification

! В режиме глобальной конфигурации

Включение SNMP-функции уведомления об изменениях в MAC-таблице

Выключение SNMP-функции уведомления об изменениях в MAC-таблице

2. Включение уведомления об изменениях в MAC-таблице глобально

Команда

Описание

no mac-address-table notification

! В режиме глобальной конфигурации

Включение уведомления об изменениях в MAC-таблице

Выключение уведомления об изменениях в MAC-таблице

3. Настройка интервала отправки уведомления об изменениях в MAC-таблице

Команда

Описание

mac-address-table notification interval

no mac-address-table notification interval

! В режиме глобальной конфигурации

Настройка интервала отправки уведомления об изменениях в MAC-таблице

Возврат значений по-умолчанию (30 секунд)

4. Настройка размера истории таблицы

Команда

Описание

mac-address-table notification history-size

no mac-address-table notification history-size

! В режиме глобальной конфигурации

Настройка размера истории таблицы

Возврат значений по-умолчанию (10 записей)

5. Настройка типа события для отправки SNMP-trap

Команда

Описание

! В режиме конфигурации порта

Выбор типа события для отправки SNMP-trap

Выключение отправки по событию с данного интерфейса

6. Просмотр конфигурации и данных

Команда

Описание

show mac-notification summary

! В привилегированном режиме

Просмотр конфигурации и данных

7. Очистка статистики

Команда

Описание

clear mac-notification statistics

! В привилегированном режиме

10.5.2. Пример настройки уведомлений об изменениях в MAC-таблице

Предположим, система управления сетью (NMS — Network Management Station) настроена на прием сообщений SNMP-trap от коммутатора. Для того, чтобы коммутатор отправлял сообщения NMS при изменениях в таблице MAC-адресов, можно настроить функционал следующим образом:

Источник

Как выбрать сетевой коммутатор

Как выбрать сетевой коммутатор

Аватар пользователя

Сейчас, во время всевозможных гаджетов и электронных девайсов, которые переполняют среду обитания обычного человека, актуальна проблема – как эти все интеллектуальные устройства увязать между собой. Почти в любой квартире есть телевизор, компьютер/ноутбук, принтер, сканер, звуковая система, и хочется как-то скоординировать их, а не перекидывать бесконечное количество информации флешками, и при этом не запутаться в бесконечных километрах проводов. Та же самая ситуация касается офисов – с немалым количеством компьютеров и МФУ, или других систем, где нужно увязать разных представителей электронного сообщества в одну систему. Вот тут и возникает идея построения локальной сети. А основа грамотно организованной и структурированной локальной сети – сетевой коммутатор.

ОПРЕДЕЛЕНИЕ

Коммутатор, или свитч — прибор, объединяющий несколько интеллектуальных устройств в локальную сеть для обмена данными. При получении информации на один из портов, передает ее далее на другой порт, на основании таблицы коммутации или таблицы MAC-адресов. При этом процесс заполнения таблицы идет не пользователем, а самим коммутатором, в процессе работы – при первом сеансе передачи данных таблица пуста, и изначально коммутатор ретранслирует пришедшую информацию на все свои порты. Но в процессе работы он запоминает пути следования информации, записывает их к себе в таблицу и при последующих сеансах уже отправляет информацию по определенному адресу. Размер таблицы может включать от 1000 до 16384 адресов.

Для построения локальных сетей используются и другие устройства – концентраторы (хабы) и маршрутизаторы (роутеры). Сразу, во избежание путаницы, стоит указать на различия между ними и коммутатором.

Концентратор (он же хаб) – является прародителем коммутатора. Время использования хабов фактически ушло в прошлое, из-за следующего неудобства: если информация приходила на один из портов хаба, он тут же ретранслировал ее на другие, «забивая» сеть лишним трафиком. Но изредка они еще встречаются, впрочем, среди современного сетевого оборудования выглядят, как самоходные кареты начала 20-го века среди электрокаров современности.

Маршрутизаторы – устройства, с которыми часто путают коммутаторы из-за похожего внешнего вида, но у них более обширный спектр возможностей работы, и ввиду с этим более высокая стоимость. Это своего рода сетевые микрокомпьютеры, с помощью которых можно полноценно настроить сеть, прописав все адреса устройств в ней и наложив логические алгоритмы работы – к примеру, защиту сети.

Читайте также:  Прогнозирование Функция тренда

Коммутаторы и хабы чаще всего используются для организации локальных сетей, маршрутизаторы – для организации сети, связанной с выходом в интернет. Однако следует заметить, что сейчас постепенно размываются границы между коммутаторами и маршрутизаторами – выпускаются коммутаторы, которые требуют настройки и работают с прописываемыми адресами устройств локальной сети. Они могут выполнять функции маршрутизаторов, но это, как правило, дорогостоящие устройства не для домашнего использования.

Самый простой и дешевый вариант конфигурации домашней локальной сети средних размеров (с количеством объектов более 5), с подключением к интернету, будет содержать и коммутатор, и роутер:

ОСОБЕННОСТИ РАБОТЫ

При покупке коммутатора нужно четко понимать – зачем он вам, как будете им использоваться, как будете его обслуживать. Чтобы выбрать устройство, оптимально отвечающее вашим целям, и не переплатить лишних денег, рассмотрим основные параметры коммутаторов:

  • Вид коммутатора– управляемый, неуправляемый и настраиваемый.
  • Неуправляемые коммутаторы – не поддерживают протоколы сетевого управления. Наиболее просты, не требуют особых настроек, стоят недорого: от 440 до 2990 рублей. Оптимальное решение для маленькой локальной сети. Со сборкой локальной сети на их основе справится даже человек, далекий от этих дел – требуется лишь купить сам коммутатор, кабели необходимой длины для подключения оборудования (лучше, в виде патч-корда, т.е. «с вилками» в сборе – не забудьте перед покупкой осмотреть оборудование, к которому будет подключаться кабель, и уточнить, какой именно тип разъема вам понадобится), ну и собрать саму сеть. Простейшая настройка описана в документации к устройству.
  • Управляемые коммутаторы – поддерживают протоколы сетевого управления, обладают более сложной конструкцией, предлагают более широкий функционал – с помощью WEB-интерфейса или специализированных программ ими можно управлять, прописывая параметры подключенной к ним сети, приоритеты отдельных устройств и пр. Именно этот тип коммутаторов может заменять маршрутизаторы. Цена на такие устройства колеблется в диапазоне от 2499 до 14490 рублей. Данный вид коммутаторов представляет интерес для специализированных локальных сетей – видеонаблюдение, промышленная сеть, офисная сеть.
  • Настраиваемые коммутаторы– устройства, которые поддерживают некоторые настройки (к примеру – конфигурирование VLAN (создание подгрупп)), но все равно во многом уступают управляемым коммутаторам. Настраиваемые коммутаторы могут быть как управляемыми, так и неуправляемыми.
  • Размещение коммутатора – может быть трех типов:
  1. Настольный – компактное устройство, которое можно просто разместить на столе;
  2. Настенный– небольшое устройство, которое, как правило, можно расположить как на столе, так и на стене – для последнего предусмотрены специальные пазы/крепления;
  3. Монтируемый на стойку – устройство с предусмотренными пазами для монтажа в стойку сетевого оборудования, но которое, как правило, также можно расположить на столе.
  • Базовая скорость передачи данных – скорость, с которой работает каждый из портов устройства. Как правило, в параметрах коммутатора указывается сразу несколько цифр, к примеру: 10/100Мбит/сек – это означает, что порт может работать и со скоростью 10Мбит/сек, и 100Мбит/сек, автоматически подстраиваясь под скорость источника данных. Представлены модели с базовой скоростью:
  1. 10/100Мбит/сек;
  2. 10/100/1000Мбит/сек;
  3. 10/20/100/200/1000/2000Мбит/сек.
  • Общее количество портов коммутатора – один из основных параметров, в принципе именно он больше всего влияет конфигурацию локальной сети, т.к. от него зависит, какой количество оборудования вы сможете подключить. Диапазон лежит в пределах от 5 до 48 портов. Коммутаторы с количеством портов 5-15 наиболее интересны для построения маленькой домашней сети, устройства с количеством портов от 15 до 52 ориентированы уже на более серьезные конфигурации.

  • Количество портов со скоростью 1Гбит/сек – порты, поддерживающие скорость 100Мбит/сек, бывает до 48;
  • Количество портов со скоростью 1Гбит/сек – порты, поддерживающие скорость 1Гбит/сек – что особенно актуально для высокоскоростной передачи данных, бывает до 48;
  • Поддержка РоЕ – если такой параметр есть, то означает, что подключенное к порту с этой опцией устройство можно питать по сетевому кабелю (витой паре), при этом никакого влияния на передающийся сигнал информации не оказывается. Функция особенно привлекательна для подключения устройств, к которым нежелательно, либо невозможно подводить дополнительный кабель питания – к примеру, для WEB-камер.
  • SFP-порты – порты коммутатора для связи с устройствами более высокого уровня, либо с другими коммутаторами. По сравнению с обычными портами могут поддерживать передачу данных на более дальние расстояния (стандартный порт с RJ-45 разъемом и подключенным кабелем «витая пара» поддерживает передачу в пределах 100м). Такой порт не оснащен приемо-передатчиком, это только слот, к которому можно подключить SFP-модуль, представляющий из себя внешний приемо-передатчик для подключения нужного кабеля – оптического, витой пары.

  • Скорость обслуживания пакетов – характеристика, обозначающая производительность оборудования, и измеряющаяся в миллионах пакетов в секунду – Мррs. Как правило, подразумеваются пакеты размеров 64 байта (уточняется производителем). Величина этой характеристики различных устройств лежит в пределах от 1,4 до 71,4 Мррs.

ОБЛАСТЬ ПРИМЕНЕНИЯ

Область применения коммутаторов широка, самые распространенные сферы применения:

  • маленькая домашняя локальная сеть, включающая, к примеру, несколько компьютеров, принтер, телевизор и музыкальный центр (при условии, что все оборудование поддерживает сетевое подключение);

  • локальная сеть предприятия/офиса, с большим количеством компьютеров и офисной техники;

  • системы «умный дом» – с подключением огромного множества датчиков, контролирующих все по желанию хозяина – начиная с котла отопления, и заканчивая крышкой унитаза;

  • системы видеонаблюдения – если система велика, камер много, то помимо контроллера для подключения всех камер целесообразно использовать коммутатор;

  • промышленные локальные сети, объединяющие датчики, контролирующие процесс производства и диспетчерские центры, откуда идет непосредственное управление технологическим процессом.

СТОИМОСТЬ

Ценовой разброс различных устройств велик – от 440 до 27999 рублей.

От 440 до 1000 рублей обойдутся простые устройства неуправляемого типа, с общим количеством портов до 5 штук, с наличием у некоторых устройств портов 1 Гбит/сек.

Читайте также:  Железы внутренней секреции человека в таблице

В сегменте от 1000 до 10000 рублей будут устройства как управляемого, так и не управляемого типов, с количеством портов до 24 портов, с возможностью РоЕ, с наличием SFP-порта.

За стоимость от 10000 до 27999 рублей вы сможете приобрести высокопроизводительное устройство, для высокоемких сетей.

Источник

Размер таблицы коммутации

date image2015-02-24
views image1868

facebook icon vkontakte icon twitter icon odnoklasniki icon

Максимальная емкость таблицы коммутации определяет предельное количество MAC-адресов, которыми может одновременно оперировать коммутатор. В таблице

коммутации для каждого порта могут храниться как динамически изученные МАС-адреса, так и статические МАС-адреса, которые были созданы администратором сети.

Значение максимального числа МАС-адресов, которое может храниться в таблице коммутации, зависит от области применения коммутатора. Коммутаторы D-Link для рабочих групп и малых офисов обычно поддерживают таблицу МАС-адресов емкостью от 1К до 8К. Коммутаторы крупных рабочих групп поддерживают таблицу МАС-адресов емкостью от 8К до 16К, а коммутаторы магистралей сетей – как правило, от 16К до 64К адресов и более.

Недостаточная емкость таблицы коммутации может служить причиной замедления работы коммутатора и засорения сети избыточным трафиком. Если таблица коммутации полностью заполнена, и порт встречает новый МАС-адрес источника в поступившем кадре, коммутатор не сможет занести его в таблицу. В этом случае ответный кадр на этот МАС- адрес будет разослан через все порты (за исключением порта-источника), т.е. вызовет лавинную передачу.

Объем буфера кадров

Для обеспечения временного хранения кадров в тех случаях, когда их невозможно немедленно передать на выходной порт, коммутаторы, в зависимости от реализованной архитектуры, оснащаются буферами на входных, выходных портах или общим буфером для всех портов. Размер буфера влияет как на задержку передачи кадра, так и на скорость потери пакетов. Поэтому чем больше объем буферной памяти, тем менее вероятны потери кадров.

Обычно коммутаторы, предназначенные для работы в ответственных частях сети, обладают буферной памятью в несколько десятков или сотен килобайт на порт. Общий для всех портов буфер обычно имеет объем в несколько мегабайт.

Источник

Артём Санников

Языки программирования
  • Python
    • Синтаксис
    • Работа со строками
    • Списки
    • Кортежи
    • Конструкции if
    • Словари
    • Ввод данных (input)
    • Циклы while
    • Функции
    • Команда import
    • ООП
  • PHP
    • Переменные
    • Константы
    • Операторы
    • Управляющие конструкции
    • Функции
  • jQuery
    • Введение
Базы данных
  • MySQL
    • Введение
    • Выборка данных
    • Операторы
    • Манипуляции с данными
    • Функции агрегирования
    • Сортировка и группировка
    • Комбинированные запросы
    • Объединение таблиц
    • Математические функции
    • Работа со строками
  • Firebase Google
    • Введение
    • Firebase (Web)
  • Oracle PL/SQL
    • Введение
    • Манипуляции с данными
    • Регулярные выражения
    • Представления
    • Процедуры
    • Курсоры
    • Триггеры
    • Обработка транзакций
    • Оконные функции
Программное обеспечение
  • Работа с графикой
    • Adobe Photoshop
  • Разработка интерфейсов
    • Balsamiq
  • Работа с сетью
    • Wireless Network Watcher
    • WinMTR
    • PuTTY
    • MyPublicWiFi
    • WifiInfoView
    • TCPView
    • CurrPorts
  • Системы контроля версий
    • Git
  • Локальный сервер
    • Denwer
    • Xampp
  • Офисные программы
    • Microsoft Excel
  • Работа с паролями
    • KeePass
  • Текстовые редакторы
    • Sublime Text
  • Удалённый доступ
    • TeamViewer
    • Radmin
  • Браузеры
    • Google Chrome
    • Mozilla Firefox
    • Safari
    • Opera
    • Internet Explorer
  • Работа с играми
    • Game Protector
Операционные системы
  • Windows 7
    • Установка
    • Оптимизация
    • Командная строка
  • Kali Linux
    • Установка
  • Ubuntu
    • Установка
    • Программы
    • Команды
    • Руководства
Мобильная разработка
Менеджеры пакетов
Сетевые технологии
  • Академия Cisco
    • CCNA: Introduction to Networks
    • CCNA: Routing and Switching Essentials
    • Обеспечение безопасности корпоративных сетей
    • Cisco Packet Tracer
    • Список терминов
CMS системы
  • WordPress
    • Настройки
    • Плагины
    • Создание темы
    • Функции
    • Хаки
Математика
SEO продвижение
  • Основы продвижения
  • Терминология
  • Внутренняя оптимизация
  • Внешняя оптимизация
Социальные сети
  • ВКонтакте
    • Wiki разметка
    • Виджеты
    • Сервисы
  • Instagram
    • Мобильное приложение
  • Одноклассники
    • Виджеты
Психология
Хостинг провайдер
Смартфоны
  • Главная
  • Блог
  • Портфолио
  • Контакты
  • Бесплатные материалы

Таблица MAC-адресов. Получение информации о MAC-адресах. CCNA Routing and Switching.

Коммутатор создает таблицу MAC-адресов динамически, проверяя MAC-адрес источника в кадрах, принимаемых портом. Он пересылает кадры на основе совпадения между MAC-адресом назначения в кадре и записью в таблице MAC-адресов.

При каждом поступлении кадра Ethernet в коммутатор выполняется следующий процесс.

Получение информации: проверка MAC-адреса источника

Таблица MAC-адресов. Получение информации о MAC-адресах. CCNA Routing and Switching.

Рисунок 1 — Получение информации: проверка MAC-адреса источника.

При каждом поступлении кадра в коммутатор выполняется проверка на наличие новой информации. Проверяются MAC-адрес источника, указанный в кадре, и номер порта, по которому кадр поступает в коммутатор.

  • Если MAC-адрес источника отсутствует, он добавляется в таблицу вместе с номером входящего порта. В примере на рисунке 1 компьютер PC-A отправляет кадр Ethernet компьютеру PC-D. Коммутатор добавляет MAC-адрес компьютера PC-A в таблицу.
  • Если MAC-адрес источника уже существует, коммутатор обновляет таймер обновления для этой записи. По умолчанию в большинстве коммутаторов Ethernet данные в таблице хранятся в течение 5 минут.

Примечание: Если MAC-адрес источника указан в таблице, но с другим портом, коммутатор считает эту запись новой. Запись заменяется на тот же MAC-адрес, но с более актуальным номером порта.

Пересылка: проверка MAC-адреса назначения

Таблица MAC-адресов. Получение информации о MAC-адресах. CCNA Routing and Switching.

Рисунок 2 — Пересылка: проверка MAC-адреса назначения.

Если MAC-адрес назначения является индивидуальным адресом, коммутатор ищет совпадение между MAC-адресом назначения в кадре и записью в таблице MAC-адресов.

  • Если MAC-адрес назначения есть в таблице, коммутатор пересылает кадр через указанный порт.
  • Если MAC-адреса назначения нет в таблице, коммутатор пересылает кадр через все порты, кроме входящего порта. Эта ситуация называется «неизвестный индивидуальный адрес» (unknown unicast). Как показано на рисунке 2, в таблице коммутатора нет MAC-адреса назначения для компьютера PC-D, поэтому он пересылает кадр через все порты, кроме порта 1.

Примечание: Если MAC-адрес назначения является широковещательным или групповым адресом, коммутатор также пересылает кадр через все порты, кроме входящего порта.

Источник: Академия Cisco.

Другие статьи из категории «CCNA: Introduction to Networks»

Источник