Меню

Фотоэлементы Виды и устройство Работа и применение

Фотоэлементы. Виды и устройство. Работа и применение

Сегодня в промышленности работают десятки тысяч автоматов, оснащенных электронным зрением. Электронным глазом у них служат фотоэлементы. В основе работы этих приборов лежит фотоэффект. История открытия этого явления началась 100 лет назад.

Классификация фотоэлементов

Эффекты фотоэлементов можно разделить на несколько видов, которые зависят от свойств и производимых функций:

  • Внешний фотоэффект. Его другое название – фотоэлектронная эмиссия. Электроны, вылетающие за границы вещества при возникновении внешнего фотоэффекта, называются фотоэлектронами. Образующийся фотоэлектронами при этом электрический ток, при упорядоченном движении по внешнему электрическому полю, называется фототоком.
  • Внутренний фотоэффект. Он влияет на фотопроводимость материала. Этот эффект появляется при перераспределении электронов по диэлектрикам и полупроводникам, в зависимости от их агрегатного (жидкого или твердого) и энергетического состояния. Перераспределяющее явление возникает под действием светового потока. Только при таком действии повышается электропроводимость вещества, то есть, возникает эффект фотопроводности.
  • Вентильный фотоэффект. Таким эффектом называется переход фотоэлектронов из собственных тел в другие тела (твердые полупроводники) или электролиты (жидкие).

На основе внешнего фотоэффекта работают вакуумные элементы. Они производятся в виде колб из стекла. Часть их внутренней поверхности покрывается тончайшим слоем напыления металла. Такая малая толщина позволяет получить незначительный рабочий ток. Окошко в колбе имеет прозрачность, и пропускает свет вовнутрь.

Расположенный внутри колбы анод из диска, либо проволочной петли, улавливает фотоэлектроны. При соединении анода с положительным выводом питания, цепь замкнется, и по ней будет протекать электрический ток. То есть, вакуумные элементы могут коммутировать реле.

Путем комбинации реле и фотоэлементов можно образовать разные автоматы с электронным зрением, например, на входе в метро. Внешний фотоэффект заложен во многих технологических процессах в промышленности, и является важным физическим открытием, залогом успешного развития автоматики на производстве.

Устройство и принцип действия

Хорошо очищенная цинковая пластина, медная сетка, чувствительный гальванометр включены в электрическую цепь батареи.

Fotoelement printsip deistviia 1

При освещении пластины ультрафиолетовыми лучами в цепи возникает электрический ток. Значит, свет выбивает электроны из металла. Это явление и называют фотоэффектом.

Fotoelementy printsip deistviia 2

Поставим на пути лучей стекло, задерживающее ультрафиолетовые лучи. Ток в цепи прекращается.

Fotoelement printsip deistviia 3

Вакуумный баллон. Часть его внутренней поверхности покрыта тонким слоем щелочного металла. Это катод. Анодом служит металлическое кольцо.

Подадим напряжение. Тока в цепи нет. Теперь осветим элемент, появляется ток. После снятия напряжения ток уменьшается, но не до нуля. По мере увеличения напряжения, фототок возрастает и достигает насыщения.

Fotoelement printsip deistviia 4

При отсутствии напряжения ток в цепи есть. Для прекращения фототока необходимо подать на анод отрицательный задерживающий потенциал.

Fotoelement printsip deistviia 5

Электрическое поле тормозит фотоэлектроны и возвращает их на катод. По мере приближения источника света величина светового потока увеличивается. Возрастает и фототок насыщения. Величина фототока насыщения прямо пропорциональна световому потоку. Это первый закон фотоэффекта.

Fotoelement printsip deistviia 6

Выясним, какую роль в фотоэффекте играет длина волны света. Установим синий светофильтр. При этом ток есть. С зеленым светофильтром ток уменьшается. С желтым светофильтром тока нет. Для каждого вещества есть определенная пороговая частота, ниже которой фотоэффекта нет. Это длинноволновая граница фотоэффекта.

Если увеличивать световой поток на более низких частотах, фотоэффекта не произойдет. Как объяснить это явление? Ученые изучили распределение энергии в спектре излучения нагретых тел.

Fotoelement printsip deistviia 7

Ученые также пришли к выводу, что свет излучается, распространяется и поглощается порциями – квантами энергии, фотонами. Валентные электроны в металле свободны. При поглощении фотона энергия идет на работу выхода электрона и его кинетическую энергию. Уравнение Эйнштейна раскрывает смысл 2-го закона фотоэффекта.

Кинетическая энергия фотоэлектрона определяется частотой света. При взаимодействии света с металлом мы наблюдали внешний фотоэффект. Схема опыта ученых послужила прототипом приборов на внешнем фотоэффекте.

Светочувствительный слой вещества и кольцевой анод находятся в вакуумной или газонаполненной колбе. По этому принципу устроены фотоэлементы, выпускаемые промышленностью.

Существует большая группа элементов, свойства которых меняются под воздействием света. Это полупроводники. На их основе созданы фоточувствительные приборы с так называемым внутренним фотоэффектом.

Фоторезистор

Возьмем проволочный резистор из полупроводника. Включим его в электрическую цепь. Под действием света происходят очень сильные изменения электрического сопротивления, и ток возрастает. Изменение проводимости не зависит от направления тока в фоторезисторе. Как возникает внутренний фотоэффект?

Рассмотрим элемент германий. Он четырехвалентный. На схеме изображена устойчивая структура полупроводника. Атомы прочно связаны ковалентной связью. Если энергия кванта света достаточна, чтобы разорвать связь электрона с атомом, он становится свободным, и блуждает по кристаллу. На его месте возникает так называемая дырка. Это положительный заряд, равный заряду электрона. Дырка может быть снова занята электроном.

Fotoelementy printsip deistviia 8

Приложим разность потенциалов. Возникнет направленное движение электронов и дырок – электрический ток. Так устроен фоторезистор.

Fotoelementy printsip deistviia 9

При воздействии света появляются носители, резко увеличивается проводимость, и возрастает ток в цепи.

Проводимость очень чистых полупроводников мала. Ее можно увеличить, если добавить примесь другого элемента. Добавим, например, атомы мышьяка. Они имеют большую валентность. При этом часть электронов оказывается свободной. Благодаря ним и увеличивается проводимость. Эта примесь дает материал n-типа. У индия валентность меньше. Он захватывает электроны кремния, увеличивая число дырок. Проводимость становится дырочной. Эта примесь дает материал р-типа.

Соединим два полупроводника n-типа и р-типа. На границе произойдет перераспределение зарядов. Дырки входят в р-область, а электроны в n-область до тех пор, пока на границе не возникнет электрическое поле, которое препятствует дальнейшему перераспределению. Так возникает двойной слой заряда, который называют р-n переходом.

Fotoelementy printsip deistviia 10

Благодаря фотоэффекту при воздействии света появляются электроны и дырки. Возникает разность потенциалов.

Fotoelementy printsip deistviia 11

Если цепь замкнуть, появится электрический ток. Этот эффект можно использовать для прямого преобразования световой энергии в электрическую. По этому принципу работают преобразователи световой энергии в электрическую, в экспонометрах, люксметрах, солнечных батареях.

Фотодиод

Простой фотодиод – это обычный полупроводниковый диод с переходом р-n, на который может воздействовать световой поток. В итоге материал меняет свои свойства, и дает возможность исполнять разные функции в цепи электрического тока. При отсутствии света диод имеет обычные свойства.

Fotoelementy printsip deistviia 12

Комбинируя структуры, можно получить фототранзистор. Световой луч управляет его работой.

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

A. Применение фотоэффекта

Применение фотоэффекта в технике

Приборы, принцип действия которых основан на явлении фотоэффекта, называют фотоэлементами. Фотоэлементы, действие которых основано на внешнем фотоэффекте, имеют следующее устройство (рис. 19.6). Внутренняя поверхность стеклянного баллона, из которого выкачан воздух, по крыта светочувствительным слоем К с небольшим прозрачным для света участком — «окном» О для доступа света внутрь баллона. В центре баллона находится металлическое кольцо А. От электродов К к А сделаны выводы для подключения фотоэлемента к электрической цепи. В качестве светочувствительного слоя обычно используют напыленные покрытия из щелочных металлов, имеющих малую работу выхода, т.е. чувствительных к видимому свету (изготовляют и фотоэлементы, чувствительные только к ультрафиолетовым лучам).

Фотоэлементы, действие которых основано на внешнем фотоэффекте, преобразуют в электрическую энергию лишь незначительную часть энергии излучения. Поэтому в качестве источников электроэнергии их не используют, зато широко применяют в различных схемах автоматики для управления электрическими цепями с помощью световых пучков.

В качестве примера рассмотрим принцип действия фотоэлектрического реле, срабатывающего при прерывании светового потока, падающего на фотоэлемент (рис. 19.7, а). Фотореле состоит из фотоэлемента Ф, усилителя фототока, в качестве которого используют полупроводниковый триод (транзистор) Т, и электромагнитного реле, включенного в цепь коллектора транзистора. Напряжение на фотоэлемент подают от источника тока E1, а на транзистор — от источника тока Е2. Между базой и эмиттером транзистора включен нагрузочный резистор R.

Когда фотоэлемент освещен, в его цепи, содержащей резистор Я, идет слабый ток, потенциал базы транзистора выше потенциала эмиттера, и ток в коллекторной цепи транзистора отсутствует.

Если же поток света, падающий на фотоэлемент, прерывается, ток в его цепи сразу прекращается, переход эмиттер — база открывается для основных носителей, и через обмотку реле, включенного в цепь коллектора, пойдет ток. Реле срабатывает, и его контакты замыкают исполнительную цепь. Ее функциями могут быть остановка пресса, в зону действия которого попала рука человека, выдвигание преграды в турникете метро, автоматическое включение освещения на улицах. Фотоэлементы применяются в военном деле в самонаводящихся снарядах, для сигнализации и локации невидимыми лучами (инфракрасными).

С помощью фотоэлементов осуществляется воспроизведение звука, за-писанного на кинопленке, а также передача движущихся изображений (телевидение).

Комбинация явлений фотоэффекта со вторичной электронной эмиссией применяется в фотоэлектронных умножителях (ФЭУ) (рис. 19.7, б), представляющих собой вакуумную трубку с фотокатодом К и анодом А, между которыми расположено несколько электродов-эмиттеров. Электроны, вырванные с фотокатода под действием света, попадают на эмиттер Э1, пройдя ускоряющую разность потенциалов между К к Э1. Из эмиттера Э1 выбиваются электроны. Усиленный электронный поток направляется на эмиттер Э2 и процесс умножения повторяется на всех последующих эмиттерах. Усиление 9-каскадного ФЭУ достигает 10 6 , т.е. на выходе из фотоумножителя сила тока в миллион раз превосходит первичный фототок.

Читайте также:  Урок физики в 8 м классе Виды теплопередачи

На явлении внутреннего фотоэффекта основана работа фотосопротивлений. Простейшее фотосопротивление (рис. 19.8) — это пластинка из диэлектрика, покрытая тонким слоем полупроводника, на поверхности которого укреплены токопроводящие электроды. При освещении пластинки возникает фотопроводимость, и в цепи, где включены фотосопротивления, идет ток. Фотосопротивления применяются в звуковом кино, для сигнализации, в телевидении, автоматике и телемеханике. Фотоэлементы применяются для сортировки массовых изделий по размерам и окраске. Пучок света падает на фотоэлемент, отразившись от сортируемых изделий, которые непрерывно подаются на конвейер. Окраска изделия или его размер определяют световой поток, попадающий на фотоэлемент, и силу фототока. В зависимости от силы фототока автоматически производится сортировка изделий.

На рисунке 19.8 изображена схема устройства фотоэлемента с запирающим слоем (вентильным фотоэлемент). Две соприкасающиеся друг с другом пластинки, изготовленные из металла и его оксида (полупроводника), покрыты сверху тонким прозрачным слоем металла. Пограничный слой между металлом и его оксидом имеет одностороннюю электропроводность — электроны могут проходить лишь в направлении от оксида металла к металлу. Поток электронов, идущий в этом направлении, создается под действием света без всякого внешнего источника напряжения. Вентильный фотоэлемент непосредственно превращает энергию световой волны в энергию электрического тока, т.е. является источником тока. На этом принципе основано действие солнечных батарей, которые устанавливаются на космических кораблях. Такие фото-элементы являются основной частью люксметров — приборов для измерения освещенности, а также фотоэкспонометров.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 561-564.

Источник



Виды фотоэффекта и приборы на его основе

Фотоэффект — любые изменения, которые происходят с веществом при поглощении им электромагнитного излучения.

Это могут быть: изменения строения и свойств молекул и кристаллов (фотохимический эффект), увеличение скорости химических реакций (фотокаталитический эффект), изменение характеристик движения носителей электрического заряда в веществе (фотоэлектрический эффект) и др.

Выделяют два основных вида фотоэффектов: внутренний, внешний и вентильный.

Внешний фотоэффект – испускание электронов с поверхности металлов под действием света.

Внутренний фотоэффект – изменение концентрации носителей тока в веществе и как следствие изменение электропроводности данного вещества под действием света.

Вентильный фотоэффект – возникновение ЭДС под действием света в системе, содержащей контакт двух различных полупроводников.

Применение внешнего фотоэффекта?

1. Кино: воспроизведение звука.

2. Фототелеграф, фототелефон.

3. Фотометрия: для измерения силы света, яркости, освещенности.

4. Управление производственными процессами.

Применение внутреннего фотоэффекта?

Фоторезистор – устройство, сопротивление которого зависит от освещенности.

Используются при автоматическом управлении электрическими цепями с помощью световых сигналов и в цепях переменного тока.

Использование вентильного фотоэффекта.

Используется в солнечных батареях, которые имеют КПД 12 -16% и применяются в искусственных спутниках Земли, при получении энергии в пустыне.

Принцип действия солнечной батареи: при поглощении кванта энергии полупроводником освобождается пара дополнительных носителей (электрон и дырка), которые движутся в разных направлениях: дырка – в сторону полупроводника р-типа, а электрон в сторону полупроводников n–типа. В результате образуется в полупроводнике n–типа избыток свободных электронов, а полупроводнике р-типа- избыток дырок. Возникает разность потенциалов.

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами. Существуют полупроводниковые фотоэлементы, в которых под действием света происходит изменение концентрации носителей тока. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве не возобновляемых источников тока в часах, микрокалькуляторах, проходят испытания первые солнечные автомобили, используются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях. С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.

На основе явления фотоэффекта были созданы особые приборы, в которых энергия света управляет энергией электрического тока или преобразуется в нее. Применение фотоэлектронных приборов позволило создать телевидение, станки, позволяющие без участия человека изготовлять детали по чертежам, контролировать размеры изделий, включать и выключать уличное освещение и маяки.

Источник

Фотоэффект виды формула Эйнштейна

Содержание

  1. Что такое фотоэффект
  2. Кто открыл фотоэффект
  3. Законы фотоэффекта
  4. Вакуумный фотоэлемент
  5. Фотоэффект в полупроводниках
  6. Применение фотоэффекта
  7. Фотохимическое действие света

Фотоэффект это испускание электронов в результате действия на вещество (твердые жидкие) солнечного света, а также электромагнитного излучения, это происходит из за передачи части энергии фотонов электронам этого вещества.

Разделяется на два основных вида: внешний и внутренний.

Внешний — это поглощение фотонов который сопровождается вылетом электронов за пределы этого вещества.

Внутренний — здесь электроны остаются в данном веществе и изменяют свое энергетическое состояние.

Примером фотоэффекта служит солнечная батарея, в результате действия солнечного света образуется постоянный электрический ток.

Что такое фотоэффект

Свет, падая на поверхность металла и поглощаясь в нем, вызывает эмиссию электронов. Это явление называется фотоэлектрическим эффектом (сокращенно — фотоэффектом).

Фотоэффект можно показать следующим опытом: хорошо очищенной и укрепленной на электроскопе Э цинковой пластинке П (рис. ) предварительно сообщают отрицательный заряд (избыток электронов облегчает их эмиссию) и действуют на нее излучением электрической дуги или ртутной лампы. При этом пластинка быстро разряжается, что наблюдается по электроскопу.

Кто открыл фотоэффект

В 1887 году при работе Генрихом Герцем с открытым резонатором было выяснено , что освещение на цинковые пластинки разрядника ультрафиолетом, прохождение искры облегчается.

Основные закономерности фотоэффекта были установлены А. Г. Столетовым в 1890 г. В 1905 г. Эйнштейн показал, что фотоэффект хорошо объясняется, если предположить, что свет поглощается прерывно такими же порциями, какими он по предположению Планка испускается. Эти элементарные порции или кванты света Эйнштейн назвал фотонами.

Более подробные характеристики фотоэффекта были получены позже, пользуясь вакуумной камерой Т (рис. , а) в которую помещались металлические электроды А и К.

Излучение И пропускалось через окно О, закрытое кварцевой пластинкой Я, измерялся фототок I ф, образуемый потоком электронов, испускаемых катодом (гальванометр Г) и напряжение U между электродами (вольтметр V), которое регулировалось потенциометром Р.

При постепенном увеличении напряжения фототок I ф нарастал, достигая при некотором его значении максимальной величины — фототока насыщения I ф.н.

При обратной полярности приложенного напряжения фототок постепенно убывал и при некотором его значении U 3 снижался до нуля (рис. , б).

Наличие фототока при отрицательном напряжении между электродами показывает, что фотоэлектроны имеют начальную скорость и кинетическую энергию, которая позволяет им преодолевать противодействие сил электрического поля между электродами.

В результате были установлены три закона фотоэффекта.

Законы фотоэффекта

  1. Первый закон фотоэффекта (закон Столетова). Фототок насыщения I ф .н(т. е. наибольшее количество фотоэлектронов, испускаемое катодом в единицу времени) прямо пропорционален лучистому потоку Ф э, падающему на металл: I ф .н = kФ э, где k — коэффициент пропорциональности, который зависит как от природы металла, так и от длины волны излучения и называется чувствительностью к фотоэффекту.
  2. Второй закон фотоэффекта. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности.
  3. Третий закон фотоэффекта. Фотоэффект вызывается только под действием излучения, длина волны которого меньше некоторой предельной длины волны λ к, характер ной для каждого металла и называемой красной границей фотоэффекта.

При длине волны большей, чем предельная λ к независимо от интенсивности излучения, фотоэффект не происходит.

Фотоэффект происходит в результате поглощения фотонов свободными электронами металла. Каждый фотон взаимодействует с одним электроном (рис. 2). При этом электрон получает дополнительную энергию, равную энергии фотона Е ф. Если эта энергия меньше работы выхода А электрона из металла:

то фотоэффекта не происходит (усиливается тепловое движение электрона).

Если энергия фотона равна или больше работы выхода:

то фотоэффект происходит (работа выхода зависит от природы металла и одинакова как при фотоэлектронной, так и термоэлектронной эмиссии). При этом, если энергия фотона превышает работу выхода, то разность между ними переходит в кинетическую энергию mυ 2 э/2 фотоэлектрона. Энергия фотона по Планку Е ф = hv, следовательно,

Читайте также:  Создание списка последовательных дат

Это уравнение называется уравнение Эйнштейна для фотоэффекта.

Из уравнения следует, что mυ 2 э/2 = hv — A, т.е. энергия и скорость фотоэлектронов зависят только от частоты излучения и с повышением ее увеличивается. Это объясняет II закон фотоэффекта.

В предельном случае h v K = A, где. v K — наименьшая частота, при которой происходит фотоэффект v к = A/ h. Соответствующая ей длина волны (красная граница фотоэффекта):

где A выражена в эргах. Это объясняет III закон фотоэффекта.

Таблица фотоэффекта металлов

Данные о длине волны красной границы фотоэффекта и о работе выхода для некоторых металлов приведены в таблице.

Металл λ кр в ммк А эв
Серебро 260 4,75
Вольфрам 276 4,50
Цинк 290 4,20
Натрий 550 2,25
Цезий 620 2,0

Количество фотоэлектронов, испускаемых металлом в единицу времени (или фототок насыщения), пропорционально количеству фотонов, падающих на металл в единицу времени, или лучистому потоку. Этим объясняется I закон фотоэффекта.

Чем объясняется фотоэффект

Практически только небольшая доля от всех падающих на металл фотонов вызывает фотоэффект, причем она зависит как от природы металла (например, у щелочно-земельных металлов и их окисей она выше, чем у других металлов), так и от энергии фотонов: с повышением ее она возрастает.

В связи с этим чувствительность металла к фотоэффекту возрастает с уменьшением длины волны. У ряда веществ имеются резко выделяющиеся максимумы чувствительности к фотоэффекту в определенных узких интервалах длины волны. Это явление называется избирательным фотоэффектом.

Вакуумный фотоэлемент

Вакуумный фотоэлемент (рис. 3, а) состоит из стеклянной вакуумной колбы Б с цоколем Ц со штырьками для установки в гнезда ламповой панельки. Внутренняя поверхность колбы, за исключением окошка, через которое проходит свет, покрыта фоточувствительным слоем.

Слой соединен с выводом в цоколе и служит катодом К лампы. В центре колбы на ножке помещается второй электрод — анод А в виде кольца или сетки. Фотоэлемент включают последовательно в цепь источника постоянного напряжения, величина которого обеспечивает получение в цепи тока насыщения (рис. 3, б).

Чувствительность вакуумных фотоэлементов измеряется током насыщения в микроамперах, приходящимся на 1 лм светового потока, и в области видимого излучения имеет порядок 10—15 мка/лм.

Умножители фотоэффекта

Для усиления фототока применяют фотоэлектронные умножители ( ФЭУ) — приборы, в которых, кроме фотоэффекта, используется явление вторичной эмиссии электронов.

Умножитель (рис. 3) представляет вакуумный фотоэлемент с несколькими промежуточными электродами, называемыми эмиттерами, или динодами, которые покрыты веществом, легко испускающим при ударе электроны. Свет, падая на катод К, вызывает фотоэлектронную эмиссию.

Электроны, ускоряясь электрическим полем, создаваемым напряжением U 1 источника питания (рис. 3), падают на первый эмиттер и выбивают из него вторичные электроны уже в большем количестве. Эти электроны, ускоряясь, падают на второй эмиттер, количество их увеличивается и т. д.

Постепенно усиливающий поток электронов падает на последний электрод — анод и создает ток через сопротивление R, включенное в цепь анода. Напряжение с него передается на приемное устройство, обычно — электронноламповый усилитель и измерительный прибор.

Если коэффициент усиления электронного тока на одном электроде п, а число их т, то общее усиление в умножителе k — п т и соответственно ток I а в анодной цепи I а = I к п т , где I к — ток фотокатода.

Усиление может достигать сотен тысяч. Напряжение на эмиттеры подается от высоковольтного выпрямителя (500—1000 в) через делитель напряжения на сопротивлениях.

Преобразователь состоит из стеклянного сосуда К с высоким вакуумом, в котором имеется полупрозрачный фотокатод ФК, против него расположен флуоресцирующий экран Э.

Между ними находится система электродов Н—Л, ускоряющая и фокусирующая электроны подобно электродам в электроннолучевой трубке. К электродам подводится постоянное высокое напряжение U.

Оптическое изображение предмета с помощью линзы проектируется на фотокатод ФК (при рентгеновском изображении последнее отбрасывается непосредственно на фотокатод, который в этом случае покрывается со стороны падающих лучей флуоресцирующим слоем).

Эмиссия электронов с фотокатода прямо пропорциональна его освещенности, поэтому плотность потока электронов отражает характер изображения на фотокатоде.

Электроны ускоряются электрическим полем между электродами, падая на экран эт на нем вторичное флуоресцирующее изображение предмета. Оно может быть сделано значительно более ярким, чем изображение, падающее на фотокатод, а также наблюдаться увеличенным с помощью окуляра О.

Фотоэффект в полупроводниках

Фотоэффектом в наиболее широком значении называется отрыв электронов от атомов или молекул, происходящий в результате поглощения фотонов электромагнитного излучения. Если процесс завершается выходом электронов за пределы вещества, то фотоэффект называется внешним, если электроны остаются внутри вещества — то внутренним.

Внешний фотоэффект характерен для металлов. Внутренний фотоэффект происходит в полупроводниках. При этом может иметь место повышение их электропроводности (такой полупроводник называется фоторезистором) или — при определенных условиях — образование фотоэлектродвижущей силы. Это используется в фотоэлементах с запирающим слоем.

К явлениям внутреннего фотоэффекта относится также первичная ионизация газа, происходящая при поглощении оптического излучения, а также ионизация любого вещества под действием рентгеновского и радиоактивного гамма излучения.

Вентильный (с запирающим слоем) полупроводниковый фотоэлемент состоит из двух слоев электронного и дырочного полупроводников (или из слоя дырочного полупроводника, нанесенного на металл), между которыми образуется электронно-дырочный переход или запирающий слой.

В результате фотоэффекта, т. е. отрыва электронов, в полупроводниках образуются носители зарядов: электроны и дырки. Те из них, которые являются неосновными для данного полупроводника, проходят через запирающий слой в соседний полупроводник.

Таким образом происходит разделение зарядов разного знака и между слоями полупроводника образуется разность потенциалов порядка 0,1—0,15 в. В связи с этим фотоэлемент не требует источника питания .

Селеновый фотоэлемент

Селеновый фотоэлемент (рис. 4 , а) состоит из стальной пластинки 1. которая служит одним из электродов. Она покрыта тонким слоем 2 селена с дырочной проводимостью (р). Поверх селена нанесен тончайший слой 3 серебра, который служит вторым электродом.

Атомы серебра проникают в прилежащий к нему слой селена и придают ему электронную проводимость ( n). Между верхним и нижним слоями селена образуется электронно-дырочный переход или запирающий слой, в котором возникает контактная разность потенциалов (КРП), направленная от п к р слою (рис. 4 , б).

Фотоэлемент заключен в пластмассовую открытую сверху коробку 4, на которой укреплены два зажима 5, соединенных с электродами.

Применение фотоэффекта

Фотоэффект используется при устройстве электронно-оптических преобразователей (электронных преобразователей оптического изображения). Прибор предназначается для усиления яркости изображения при рентгеноскопии, для преобразования изображения, полученного с помощью инфракрасного излучения в видимое изображение и т. п.

Фотоэлектрический эффект используется в приборах, называемых фотоэлементами, которые в настоящее время получили широкое применение в различных областях техники (телевидение, фототелеграф, звуковое кино и др.) и особенно в технике световых измерений.

Фотохимическое действие света

При поглощении света атомы или молекулы вещества получают дополнительную энергию. В определенных случаях при этом атом или молекула получают возможность вступать в такие химические реакции, которые не происходят при их обычном состоянии, такие атомы и молекулы называются активированными.

Активация молекулы описывается уравнением

где А — молекула в основном состоянии, hv — энергия фотона, поглощенного молекулой, и А*—активированная молекула.

Реакции, протекающие с участием активированных атомов или молекул, называются фотохимическими. Примером фотохимической реакции служит реакция разложения светом бромистого серебра, на которой основана фотография.

Основной закон фотохимической реакции: количество прореагировавшего вещества прямо пропорционально количеству поглощенной энергии излучения.

Другими словами: количество Q прореагировавшего вещества прямо пропорционально поглощенному лучистому потоку Ф э и времени его действия:

где k — есть коэффициент, зависящий от природы происходящей реакции и длины волны излучения.

Фотохимическую реакцию может вызывать только излучение, энергия фотонов которого больше некоторой энергии D, необходимой для возбуждения фотохимического процесса (энергия активации):

Поэтому более химически активным является коротковолновое излучение (например, в области оптического— ультрафиолетовое), фотоны которого имеют большую энергию. Фотохимические реакции являются первичным звеном многих биологических реакций. Такова, например, реакция фотосинтеза растениями крахмала из активированных молекул углекислоты и воды:

К фотохимическим реакциям относятся реакции синтеза многих витаминов.

К этим реакциям относится также реакция разложения зрительного пурпура в сетчатке глаза. При поглощении фотона hv молекула родопсина R активируется и затем распадается на белок Р и ретинен r — вещество, близкое по составу к витамину А.

При поглощении света может происходить также изменение связей между частицами в сложной, например, белковой молекуле, что вызовет соответствующее изменение ее структуры. Это также относится к фотохимическим процессам.

Читайте также:  Список стран с наибольшим показателем ВВП за 2010 год

Источник

Фотоэффект и его виды

Фотоэффект и его виды.

Фотоэффект (фотоэлектрический эффект) – явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества.

Фотоэффект:

Фотоэффект (фотоэлектрический эффект) – явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества.

На основе явления фотоэффекта созданы специальные устройства – фотоэлементы. Фотоэлемент (фотоэлектрический элемент) – электронный прибор, который преобразует энергию фотонов в электрическую энергию.

Выделяют внешний фотоэффект и внутренний фотоэффект, а также вентильный (барьерный) фотоэффект и многофотонный фотоэффект.

Внешний фотоэффект:

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений, например, фотонов. Иными словами, при внешнем фотоэффекте поглощение фотонов сопровождается вылетом электронов за пределы тела. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком. Внешний фотоэффект наблюдается в твёрдых телах (металлах, полупроводниках и диэлектриках), а также газах (фотоионизация).

Внешний фотоэффект был открыт в 1887 г. Генрихом Рудольфом Герцем. Генрих Герц проводил опыты с цинковым разрядником – разрезанным пополам стержнем с парой металлических шариков на концах разреза. На разрядник подавалось высокое напряжение. При облучении цинкового разрядника ультрафиолетом было замечено, что прохождение искры в разряднике заметно облегчалось.

В 1888-1890 гг. Александр Григорьевич Столетов сделал несколько важных открытий в области фотоэффекта, в том числе вывел первый закон внешнего фотоэффекта.

В 1898 г. Джозеф Джон Томсон экспериментально установил, что поток электрического заряда, выходящий из металла при внешнем фотоэффекте, представляет собой поток открытых им ранее частиц – названных позднее электронами.

В 1900-1902 гг. Филипп Эдуард Антон фон Ленард доказал, что энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения.

В 1905 г. внешний фотоэффект был объяснён Альбертом Эйнштейном.

Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Григорьевич Столетов в конце XIX века.

Он (фотоэлемент) представлял собой вакуумную стеклянную колбу. Часть внутренней поверхности колбы была покрыта тончайшим слоем светочувствительного металла, который выступал в качестве катода. Он контактировал с проводом, который соединялся с отрицательным источником тока. В середине колбы располагался электрод в форме диска или проволочной петли, называемый анодом. Анод соединялся с положительным источником тока. Другая часть колбы была прозрачна и пропускала вовнутрь свет. Под действием света (фотонов) из катода вырывались электроны, которые во внешнем электрическом поле устремлялись к аноду, создавая в цепи электрический ток.

Внутренний фотоэффект:

Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним. Внутренним фотоэффектом называется возрастание электропроводности вещества (наблюдается, как правило, у полупроводников и диэлектриков) и уменьшение его сопротивления под действием электромагнитных излучений, например, в результате облучения вещества видимым, инфракрасным или ультрафиолетовым излучением. Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные, без вылета наружу.

В отличие от внешнего фотоэффекта во внутреннем фотоэффекте электроны, остаются в теле вещества (полупроводника или диэлектрика), но изменяют в нём своё энергетическое состояние и увеличивают концентрацию носителей зарядов в веществе. Так, при поглощении фотона электрон переходит из валентной зоны в зону проводимости. Как следствие образуется пара носителей заряда: электрон в зоне проводимости и дырка в валентной зоне. Концентрация носителей заряда приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика) или возникновению электродвижущей силы.

Впервые явление фотопроводимости (и соответственно явление внутреннего фотоэффекта) у селена открыл Уиллоуби Смит в 1873 г.

На основе внутреннего фотоэффекта работают полупроводниковые фотоэлементы, изготавливаемые из полупроводников. Полупроводники обладают как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы имеют устойчивую структуру и прочно связаны ковалентной связью. Так, например, один электрон в кристалле кремния связан двумя атомами. Чтобы электрону освободиться из атома, ему необходимо сообщить необходимый уровень внутренней энергии. Эта энергия появляется в нем при воздействии на полупроводник, например, видимым, инфракрасным или ультрафиолетовым излучением. Если её (энергии) достаточно, то отдельные электроны отрываются от ядра и становятся свободными. Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Место разрыва (свободное место в электронной оболочке атома) именуется дыркой – положительным зарядом, который равен заряду высвободившегося электрона. Если в это время к полупроводнику приложить разность потенциалов (т.е. внешний электрический ток), то в самом полупроводнике появится электрический ток. Представленный электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Вентильный (барьерный) фотоэффект:

Разновидностью внутреннего фотоэффекта является вентильный (барьерный) фотоэффект. Вентильный (барьерный) фотоэффект или фотоэффект в запирающем слое – это явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит). Вентильный (барьерный) фотоэффект – это возникновение электродвижущей силы под действием света в области p-n перехода. Вентильный (барьерный) фотоэффект возникает в неоднородных (по химическому составу или неоднородно легированных примесями) полупроводниках, а также у контакта полупроводник-металл (при отсутствии внешнего электрического поля).

При поглощении полупроводником фотона освобождается дополнительная пара носителей – электрон и дырка, которые движутся в разных направлениях: дырка в сторону полупроводника p-типа, а электрон в сторону полупроводника n-типа. В результате в полупроводнике n-типа образуется избыток электронов, а в полупроводнике p-типа – избыток дырок. Возникает разность потенциалов – фото-ЭДС и электрический ток. По мере увеличения разности потенциалов фототок постепенно возрастает, т.к. все большее число электронов достигает анода.

На использовании вентильного фотоэффекта – возникновении электродвижущей силы в p-n переходе под действием света основан принцип действия солнечных батарей. Вентильные фотоэлементы в отличие от других фотоэлементов не требуют при работе источника тока, т.к. сами являются источником тока. Вентильный фотоэффект открывает пути для прямого преобразования световой энергии в электрическую. Вентильные фотоэлементы являются центральным элементом солнечных батарей.

Эффект прямого преобразования света в электричество впервые был открыт в 1842 г. Александром Эдмоном Беккерелем.

В 1883 г. Чарльз Фриттс впервые создал первую работающую фотоэлектрическую ячейку, используя полупроводниковый материал селен. Фритц покрыл селен очень тонким слоем золота. Полученная фотоэлектрическая ячейка имела КПД преобразования света в электричество всего около 1%, что в сочетании с высокой стоимостью материала препятствовало использованию таких ячеек для энергоснабжения.

Первую солнечную батарею на основе кремния для получения электрического тока создали Кельвин Соулзер Фуллер, Дэрил Чапин и Геральд Пирсон, все трое – специалисты компании Bell Laboratories. О создании первой солнечной батареи было заявлено 25 марта 1948 года.

Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (фотоэлементы), имеющие неоднородные полупроводниковые структуры. Неоднородность структуры фотоэлемента может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов), или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны – энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.

КПД производимых в промышленных масштабах полупроводниковых фотоэлементов в настоящее время в среднем составляет 16-19 %, у лучших образцов – до 25 %. В лабораторных условиях уже достигнуты фотоэлементы с КПД порядка 44-45 %.

Ниже в таблице приводится КПД некоторых фотоэлектрических элементов, произведенных на основе различных материалов.

Максимальные значения эффективности фотоэлементов и модулей, достигнутые в лабораторных условиях

Тип Коэффициент фотоэлектрического преобразования, %
Кремниевые 24,7
Si (кристаллический)
Si (поликристаллический)
Si (тонкопленочная передача)
Si (тонкопленочный субмодуль) 10,4
Si (аморфный) 9,5
Si (нанокристаллический) 10,1
На основе арсенида галлия и т.п.
GaAs (кристаллический) 25,1
GaAs (тонкопленочный) 24,5
GaAs (поликристаллический) 18,2
InP (кристаллический) 21,9
Тонкие плёнки халькогенидов
CIGS (фотоэлемент) 19,9
CIGS (субмодуль) 16,6
CdTe (фотоэлемент) 16,5
Фотохимические
На базе органических красителей 10,4
На базе органических красителей (субмодуль) 7,9
Органические
Органический полимер 5,15
Многослойные
GaInP/GaAs/Ge 32,0
GaInP/GaAs 30,3
GaAs/CIS (тонкопленочный) 25,8
a-Si/mc-Si (тонкий субмодуль) 11,7

Многофотонный фотоэффект:

Многофотонный фотоэффект – это явление, при котором изменение электропроводности, возникновение ЭДС или эмиссия электронов происходит вследствие поглощения одновременно энергии не от одного, а от нескольких фотонов. Такой эффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков).

Наиболее часто понятие многофотонный фотоэффект употребляется по отношению к внешнему фотоэффекту

Источник