Меню

Функции соединительной ткани человека таблица



Таблица «Группа тканей организма человека»
материал для подготовки к егэ (гиа) по биологии на тему

Вовненко Нелли Иосифовна

Материал к курсу «Здоровье человека»

Скачать:

Вложение Размер
gruppy_tkaney_chelovecheskogo_organizma.docx 17.23 КБ

Предварительный просмотр:

Группы тканей человеческого организма

Эпителий (покровная ткань)

Поверхность клеток гладкая. Клетки плотно примыкают друг к другу

Поверхность кожи, ротовая полость, пищевод, альвеолы, капсулы нефронов

Покровная, защитная, выделительная (газообмен, выделение мочи)

Железистые клетки вырабатывают секрет

Железы кожи, желудок, кишечник, железы внутренней секреции, слюнные железы

Выделительная (выделение пота, слез), секреторная (образование слюны, желудочного и кишечного сока, гормонов)

Состоит из клеток с многочисленными волосками(реснички)

Защитная (реснички задерживают и удаляют частицы пыли)

Соединительная

Группы волокнистых, плотно лежащих клеток без межклеточного вещества

Собственно кожа, сухожилия, связки, оболочки кровеносных сосудов, роговица глаза

Покровная, защитная, двигательная

Рыхло расположенные волокнистые клетки, переплетающиеся между собой. Межклеточное вещество бесструктурное

Подкожная жировая клетчатка, околосердечная сумка, проводящие пути нервной системы

Соединяет кожу с мышцами, поддерживает органы в организме, заполняет промежутки между органами. Осуществляет терморегуляцию тела

Живые круглые или овальные клетки, лежащие в капсулах, межклеточное вещество плотное, упругое, прозрачное

Межпозвоночные диски, хрящи гортани, трахей, ушная раковина, поверхность суставов

Сглаживание трущихся поверхностей костей. Защита от деформации дыхательных путей, ушных раковин

компактная и губчатая

Живые клетки с длинными отростками (остеоциты), соединенные между собой, межклеточное вещество – неорганические соли и белок оссеин

Опорная, двигательная, защитная

Жидкая соединительная ткань, состоит из форменных элементов (клеток) и плазмы (жидкость с растворенными в ней органическими и минеральными веществами – сыворотка и белок фибриноген)

Кровеносная система всего организма

Разносит О 2 и питательные вещества по всему организму. Собирает СО 2 и продукты диссимиляции. Обеспечивает постоянство внутренней среды, химический и газовый состав организма. Защитная (иммунитет). Регуляторная (гуморальная)

Мышечная (свойство: возбудимость и сократимость)

Многоядерные клетки (миоциты) цилиндрической формы до 10 см длины, исчерченные поперечными полосами

Произвольные движения (быстро сокращается и расслабляется) тела и его частей, мимика лица, речь.

Одноядерные клетки (миоциты) до 0,5 мм длины с заостренными концами (веретеновидная форма)

Стенки пищеварительного тракта, кровеносных и лимфатических сосудов, мышцы кожи

Непроизвольные сокращения (медленно сокращается и расслабляется) стенок внутренних полых органов. Поднятие волос на коже

Многоядерные клетки (кардиомиоциты) цилиндрической формы связаны между собой, исчерченные поперечными полосами

Непроизвольные сокращения (автоматия) сердечной мышцы для проталкивания крови через камеры сердца.

Нервная

(свойство: возбудимость и проводимость)

нервные клетки (нейроны)

Тела нервных клеток, разнообразные по форме и величине, до 0,1 мм в диаметре

Образуют серое вещество головного и спинного мозга

Высшая нервная деятельность. Связь организма с внешней средой. Центры условных и безусловных рефлексов.

Дендриты – короткие ветвящиеся отростки нейрона

Соединяются с отростками соседних клеток

Передают возбуждение одного нейрона на другой, устанавливая связь между всеми органами тела (передача нервного импульса к телу нейрона)

Аксоны – длинные отростки нейронов до 1 м длины. В органах заканчиваются ветвистыми нервными окончаниями. Снаружи покрыты оболочкой из соединительной ткани

Нервы периферической нервной системы, которые иннервируют все органы тела

Проводящие пути нервной системы. Передают возбуждение от нервной клетки к периферии по центробежным нейронам; от рецепторов (иннервируемых органов) – к нервной клетке по центростремительным нейронам. Вставочные нейроны передают возбуждение с центростремительных (чувствительных) нейронов на центробежные(двигательные)

Источник

Функции соединительной ткани человека таблица

Количество лейкоцитов достигает уровня, свойственного взрослому человеку, к 14-15 годам. При этом оно снижается от 10-30 тыс в 1 мкл у новорожденного до 5-8 тыс в 1 мкл у взрослого. На 1-2-м годах жизни лимфоциты (65%) преобладают над нейтрофилами (25%). К 4-му году эти показатели выравниваются. К периоду полового созревания соотношение нейтрофилов (65%) и лимфоцитов (25%) становится обратным и достигает нормы взрослого. Количество эритроцитов у новорожденного составляет 6-7 млн в 1 мкл. Нормы взрослого оно достигает к периоду полового созревания.

Все виды ионизирующего излучения, применяемые в клинике (лечебное тотальное облучение организма при множественных опухолях, трансплантации костного мозга и др.), могут привести к развитию радиационных повреждений кроветворных тканей. Эти поражения объясняются высокой чувствительностью к лучевой энергии клеток, проходящих митотический цикл в процессе гистогенеза крови. Под воздействием радиации наступают подавление пролиферации, дифференцировки, миграции развивающихся клеток крови, нарушение интеграционных взаимоотношений элементов микроокружения, гибель малодифференцированных клеток-предшественников и бластных форм, что приводит к значительному снижению интенсивности или прекращению гемопоэза. После облучения возможна регенерация миелоидной и лимфоидной тканей в органах кроветворения, что осуществляется за счет пролиферации сохранившихся стволовых кроветворных клеток. Это постепенно приводит к восстановлению гемопоэза. Показано, что для восстановления кроветворения достаточно 0,1% стволовых кроветворных клеток. Регенераторные сдвиги при несмертельном облучении в костном мозге выявляются уже через 1-2 ч после поражения. Гистогенез крови после лучевого повреждения может пойти с отклонениями и привести к развитию лейкоза.

реактивность системы крови

Соединительные ткани

В группу соединительных тканей входят разновидности волокнистых тканей (рыхлая соединительная, плотные фиброзные оформленная и неоформленная) и соединительные ткани со специальными свойствами (ретикулярная, жировая и др.). Все они имеют единый эмбриональный источник развития — мезенхиму. Среди тканей этой группы отчетливо выраженная метаболическая функция присуща рыхлой волокнистой соединительной ткани.

Рыхлая волокнистая соединительная ткань

Это — одна из наиболее распространенных в организме тканей. Она сопровождает все кровеносные и лимфатические сосуды, периферические нервы, образует строму внутренних органов, заполняет промежутки между органами, входит в состав кожи и т. д. Рыхлая соединительная ткань состоит из клеток и межклеточного вещества. В разных органах клеточный состав и межклеточные структуры рыхлой соединительной ткани имеют некоторые особенности. Поэтому понятие «соединительная ткань» является очень обобщенным. По существу, в каждом органе имеется своя соединительная ткань, максимально приспособленная к выполнению функции данного конкретного органа.

В составе рыхлой соединительной ткани находятся клетки различной гистогенетической детерминации. Среди них различают фибробласты и фиброциты (ведущий клеточный дифферон), гистиоциты-макрофаги и антигенпредставляющие клетки, пигментные клетки (меланоциты), тканевые базофилы (тучные клетки, лаброциты), перициты и адвентициальные клетки, жировые клетки (липоциты), плазматические (плазмоциты), клетки крови (гранулоциты, моноциты, лимфоциты).

Адвентициальные клетки и перициты. Адвентициальные клетки — наименее дифференцированные, но гистологически распознаваемые клетки рыхлой соединительной ткани. Располагаются клетки першаскулярно, они подвижны, имеют веретенообразную форму, их цитоплазма слабобазофильна, ядро овальное и обычно гиперхромное. Адвентициальные клетки делятся митозом. По мере дивергентной дифференцировки они превращаются в фибробласты, миофибробласты, миофиброкласты и липоциты. Следовательно, в рыхлой волокнистой соединительной ткани существует совокупность клеток возрастающей степени зрелости от камбиальной формы до фиброцита, что составляет фибробластичес-кий ряд, или фибробластический дифферон.

Тесно связаны со стенкой кровеносного сосуда микроциркуляторного русла перициты. Эти клетки располагаются между листками базальной мембраны эндотелия кровеносных сосудов, что ограничивает их подвижность. Клетки имеют отростчатую форму, в цитоплазме хорошо развита опорно-двигательная система, что придает клеткам способность к сокращению и регуляции просвета гемокапилляра.

Источник

Функции соединительной ткани человека таблица

Количество лейкоцитов достигает уровня, свойственного взрослому человеку, к 14-15 годам. При этом оно снижается от 10-30 тыс в 1 мкл у новорожденного до 5-8 тыс в 1 мкл у взрослого. На 1-2-м годах жизни лимфоциты (65%) преобладают над нейтрофилами (25%). К 4-му году эти показатели выравниваются. К периоду полового созревания соотношение нейтрофилов (65%) и лимфоцитов (25%) становится обратным и достигает нормы взрослого. Количество эритроцитов у новорожденного составляет 6-7 млн в 1 мкл. Нормы взрослого оно достигает к периоду полового созревания.

Все виды ионизирующего излучения, применяемые в клинике (лечебное тотальное облучение организма при множественных опухолях, трансплантации костного мозга и др.), могут привести к развитию радиационных повреждений кроветворных тканей. Эти поражения объясняются высокой чувствительностью к лучевой энергии клеток, проходящих митотический цикл в процессе гистогенеза крови. Под воздействием радиации наступают подавление пролиферации, дифференцировки, миграции развивающихся клеток крови, нарушение интеграционных взаимоотношений элементов микроокружения, гибель малодифференцированных клеток-предшественников и бластных форм, что приводит к значительному снижению интенсивности или прекращению гемопоэза. После облучения возможна регенерация миелоидной и лимфоидной тканей в органах кроветворения, что осуществляется за счет пролиферации сохранившихся стволовых кроветворных клеток. Это постепенно приводит к восстановлению гемопоэза. Показано, что для восстановления кроветворения достаточно 0,1% стволовых кроветворных клеток. Регенераторные сдвиги при несмертельном облучении в костном мозге выявляются уже через 1-2 ч после поражения. Гистогенез крови после лучевого повреждения может пойти с отклонениями и привести к развитию лейкоза.

реактивность системы крови

Соединительные ткани

В группу соединительных тканей входят разновидности волокнистых тканей (рыхлая соединительная, плотные фиброзные оформленная и неоформленная) и соединительные ткани со специальными свойствами (ретикулярная, жировая и др.). Все они имеют единый эмбриональный источник развития — мезенхиму. Среди тканей этой группы отчетливо выраженная метаболическая функция присуща рыхлой волокнистой соединительной ткани.

Рыхлая волокнистая соединительная ткань

Это — одна из наиболее распространенных в организме тканей. Она сопровождает все кровеносные и лимфатические сосуды, периферические нервы, образует строму внутренних органов, заполняет промежутки между органами, входит в состав кожи и т. д. Рыхлая соединительная ткань состоит из клеток и межклеточного вещества. В разных органах клеточный состав и межклеточные структуры рыхлой соединительной ткани имеют некоторые особенности. Поэтому понятие «соединительная ткань» является очень обобщенным. По существу, в каждом органе имеется своя соединительная ткань, максимально приспособленная к выполнению функции данного конкретного органа.

В составе рыхлой соединительной ткани находятся клетки различной гистогенетической детерминации. Среди них различают фибробласты и фиброциты (ведущий клеточный дифферон), гистиоциты-макрофаги и антигенпредставляющие клетки, пигментные клетки (меланоциты), тканевые базофилы (тучные клетки, лаброциты), перициты и адвентициальные клетки, жировые клетки (липоциты), плазматические (плазмоциты), клетки крови (гранулоциты, моноциты, лимфоциты).

Адвентициальные клетки и перициты. Адвентициальные клетки — наименее дифференцированные, но гистологически распознаваемые клетки рыхлой соединительной ткани. Располагаются клетки першаскулярно, они подвижны, имеют веретенообразную форму, их цитоплазма слабобазофильна, ядро овальное и обычно гиперхромное. Адвентициальные клетки делятся митозом. По мере дивергентной дифференцировки они превращаются в фибробласты, миофибробласты, миофиброкласты и липоциты. Следовательно, в рыхлой волокнистой соединительной ткани существует совокупность клеток возрастающей степени зрелости от камбиальной формы до фиброцита, что составляет фибробластичес-кий ряд, или фибробластический дифферон.

Тесно связаны со стенкой кровеносного сосуда микроциркуляторного русла перициты. Эти клетки располагаются между листками базальной мембраны эндотелия кровеносных сосудов, что ограничивает их подвижность. Клетки имеют отростчатую форму, в цитоплазме хорошо развита опорно-двигательная система, что придает клеткам способность к сокращению и регуляции просвета гемокапилляра.

Источник

ПИТАНИЕ ДЛЯ ЗДОРОВЬЯ СОЕДИНИТЕЛЬНЫХ ТКАНЕЙ

Многие из нас слышали о соединительной ткани у нас в организме, но мало кто знает насколько она важна и как ее сохранить. А ведь соединительная ткань – это не только один из основных компонентов нашей кожи и подкожной клетчатки, но и «кирпичики» сосудов, костей, зубов, роговицы и склеры глаза, хрящей. Соединительнотканный компонент есть в миокарде, прослойки соединительной ткани находятся между мышечными волокнами, даже часть мозга и жировая ткань – это соединительная ткань. Соединительная ткань — это связующее звено между всеми тканями организма. 85% от массы тела человека – это именно эта ткань!

К сожалению, узкопрофильные врачи редко интересуются нашими сопутствующими заболеваниями, а ведь поражение глаз, зубов или позвоночника — это звенья одной цепи, вызванные нарушением прочности соединительнотканных компонент в результате наследственного или приобретенного нарушения обмена веществ.

Существует насколько видов соединительной ткани:

— костная
— хрящевая (гиалиновый, эластический и волокнистый хрящ)
— кровь, лимфа
— собственно соединительная ткань (рыхлая волокнистая, плотная волокнистая, ретикулярная).
— жировая

Нас сегодня больше всего волнуют коллагены и эластины — жизненно важные белки, составляющие основу соединительной ткани, и основное аморфное вещество. Коллагены и эластины — это «пружины», именно от их здоровья упругости зависит наш внешний вид и состояние всех соединительных тканей организма, а аморфное вещество — это «гель», выполняющий важнейшие функции.

Именно через основное вещество соединительной ткани осуществляется транспорт воды и питательных веществ. Каждая клеточка нашего организма нуждается в питании и очищении от продуктов жизнедеятельности, которые осуществляются через мельчайшие капилляры кровеносного русла. Но капилляры не в состоянии «охватить» каждую клеточку, поэтому из капилляров питательные вещества попадают в межклеточное вещество, и только оттуда – к клеткам, так же и отходы из клеток поступают сначала в межклеточное вещество.

А теперь представьте, что вместо нужной гелевой (желеподобной) консистенции основного вещества соединительной ткани – цемент, или наоборот, бульон, то дойдут ли питательные вещества и гормоны до клеточной мембраны? А как будут «спущены» отходы в лимфатическую систему? А как будут выполняться другие функции соединительной ткани? Что будет с суставным хрящом, который должен выдерживать огромные нагрузки – давление в сотни атмосфер? Что будет с проницаемостью стенок кровеносных сосудов – ведь питательные вещества должны проникнуть сквозь стенки кровеносных сосудов в межклеточное вещество? А клетки иммунной системы – фагоциты, макрофаги и т.д., которые действуют не только в крови, но межклеточной жидкости? Но если межклеточная жидкость – это цемент, сквозь который невозможно пробраться? Как тогда иммунная система обнаружит эти плохие клетки?

Что же делать, чтобы соединительные ткани нашего организма долго оставались здоровыми и крепкими?

В первую очередь заботиться о «здоровье» нашего коллагена, о достаточном его количестве. В организме коллаген образуется из его предшественника, именуемого проколлагеном.

Дерматолог из Беверли Хиллз, доктор Дэйвид Эмрон, установил, что злоупотребление солнечным светом при загорании отрицательно влияет на содержащиеся в коже коллагеновые волокна, приводя к преждевременному появлению морщин и старению кожи. Доктор Дебра Джейлмэн, дерматолог из Нью-Йорка, обнаружила тесную связь развития целлюлита с ослаблением коллагеновых элементов, прикрепляющих кожу к лежащим под нею структурам и поддерживающих кожу в гладком, натянутом состоянии. Практически все специалисты, изучавшие коллаген, сходятся в мысли, что уменьшение гибкости и подвижности в суставах с возрастом — это следствие «старения» коллагена в составе соединительных тканей.

Можно ли получить его с пищей? Многие годы коллаген считался нерастворимым в воде и, поэтому, неусвояемым. Причиной этого является то, что коллаген, поступающий в организм из пищевых продуктов, сопротивляется воздействию трипсина, содержащегося в желудочной среде, однако, он гидролизуется бактериальным ферментом коллагеназой. Когда же коллаген кипятят в воде он гидролизуются, а продуктом этого становится желатин.

Биосинтез коллагена и последующее образование соединительной ткани — сложный, многоступенчатый и относительно медленный процесс (поэтому столь медленно заживают травмы соединительных тканей и хрящей, особенно у взрослых). Нарушение отдельных стадий этого процесса — в случае блокады или недостатка отдельных факторов — приводит к синтезу атипичного, легко разрушающегося коллагена. Так, недостаток витамина С тормозит гидроксилирование пролина и лизина, и поэтому служит причиной такого тяжкого заболевания, как цинга. В случае других нарушений возникают такие заболевания, как ревматоидный артрит, остеоартроз, склеродермия и ряд других не менее тяжелых заболеваний.

Самым важным фактором, необходимым для построения полноценной молекулы коллагена, являются структурные субъединицы белка — аминокислоты, образующиеся в результате расщепления белков пищевых продуктов.

Вы, безусловно, знаете, что существует около трех десятков аминокислот, являющихся пищевыми факторами. В организме многие из них синтезируются в печени. Однако, некоторые аминокислоты не могут синтезироваться в организме, и человек должен получать их с пищей. Незаменимыми для человека являются следующие аминокислоты: гистидин, изолейцин, лейцин, валин, лизин, метионин, фенилаланин, треонин и триптофан. В организме постоянно идет процесс синтеза белков, и в случае отсутствия хотя бы одной незаменимой аминокислоты образование белков приостанавливается.

Поэтому крайне важно для здоровья наших соединительных тканей наличие в питании полноценных белков. К полноценным относят белки продуктов животного происхождения, таких, как яйца, молочные продукты, мясо, птица, рыба. Неполноценным считается растительный белок из разных видов бобовых, сои, гороха, различных круп и овощей. Недостатком неполноценного белка является относительно бедный аминокислотный состав и довольно низкая степень усвоения. Например, соя содержит сравнительно много белка, но он усваивается организмом на 30–40 %, в то время как яичный белок — практически полностью. Поэтому в питании человека должно присутствовать достаточное количество белка животного происхождения, а если ваша цель — сброс лишнего веса, то этот белок должен сочетаться с минимальным количеством жира. Этому требованию отвечают следующие продукты: яичные белки, постное мясо (говядина, курица, индейка), рыба (минтай, треска, пикша, камбала, судак, хек, горбуша, лосось), молоко и кисломолочные продукты пониженной жирности.

Кроме полноценных белков крайне важны и другие компоненты питания:

Витамин С – участвует в синтезе коллагена путем содействия специальным ферментами. Организм человека на вырабатывает витамин С и он должен поступать с пищей. Следствием нарушения синтеза коллагена является повышение проницаемости стенок кровеносных сосудов, что ведет к кровоизлияниям в кожу, суставы, кровоточивости десен и т.д.

Источники витамина С: сушеный шиповник, черная смородина, красный и болгарский перец, хрен, цитрусовые, щавель, земляника, редиска, крыжовник, капуста, помидоры, картофель, брокколи, манго, петрушка, яблоки отечественные, абрикосы, персики, хурма, облепиха, рябина, овес, шпинат, помело, дыня.

Сера – входит в состав структурных белков (коллагенов), в состав определенных гликозамингликонов которые присутствуют в хряще, в склере глаза (придают прочность склере, участвуя в поддержке формы глаза), в роговице глаза (обеспечивают прозрачность роговизы), а также препятствуют образованию тромбов.

Растительные: капуста, лук, злаки, крупы, бобовые, горчица, хрен, крыжовник, виноград, яблоки, чеснок, спаржа, хлебобулочные изделия.

Животные: постная говядина, рыба, куриные яйца, молоко и молочные изделия.

Кремний — включается в состав эластина — вещества, определяющего прочность, эластичность и проницаемость кровеносных сосудов.

Растительные: цельное зерно, продукты из хлебных злаков, свекла, соя, репа, редис, зеленые бобы, картофель, лук, топинамбур, водоросли, отруби, лесные ягоды, зелень, коричневый рис, абрикосы, бананы, вишня, изюм, инжир, капуста, кукуруза, сельдерей, орехи.

Также кремний присутствует в виноградном соке, винах и пиве.

Животные: икра, яйца.

Некоторое количество кремния содержится в минеральных водах

Медь – упрочняет поперечные «сшивки» коллагена (коллагеновое волокно состоит из «ниточек» — коллагеновых фибрилл, для «сшивки» которых нужен фермент, активируемый ионами меди).

Понятно, что такой важный элемент организм должен ежедневно получать извне – с пищей, водой или через кожу.

Про воду понятно – пропущенная через медные трубы, вода поступает обогащенной ионами меди — примерно 1 мг на литр. А какие продукты содержат этот необходимый элемент? Много меди в орехах, сыром яичном желтке, печени, бобовых, злаках, кисломолочных продуктах, овощах, фруктах и ягодах. Медь есть в свежем мясе животных, рыбе, морепродуктах, проросшей пшенице, сое, ржаном хлебе, спарже, картофеле и травах: укропе, лапчатке прямостоячей, марене красильной, сушенице, листьях чайного куста, лобелии вздутой. А листья и корень женьшеня содержат самый высокий процент меди среди всех растений.

Цинк влияет на все процессы в соединительной – как на синтез, так и на распад. Он способствует быстрому заживлению ран.

Цинк активирует ферменты (металопротеазы матрикса, МПМ), которые разбирают молекулы межклеточного вещества; способствует образованию фагоцитов и усиливает активность макрофагов, чем способствует очищению от некротических тканевых элементов; способствует привлечению клеток-фибробластов в пораженную область; восполняет дефицит гиалуроновой кислоты (эта кислота относится к гликозамингликанам, формирующим аморфное вещество соединительной ткани); активирует ферменты, отвечающие за синтез коллагена.

Источники цинка: мясо гусей, кур, фасоль, кукуруза, говядина, свинина, печень.

Из зерновых и бобовых цинк усваивается хуже, чем из мяса и рыбы.

Фрукты и овощи, как правило, бедны цинком. Так что у вегетарианцев и людей, употребляющих в пищу недостаточное количество продуктов, содержащих этот микроэлемент, может развиться его дефицит.

Длительное употребление слишком соленой или слишком сладкой пищи тоже может уменьшить содержание цинка в организме.

Магний. Дефицит магния снижает и замедляет скорость синтеза коллагена.

Источники магния: Отруби пшеничные, соевая мука, миндаль, грецкие орехи, горох, пшеница, капуста, крупы.

Антиоксиданты защищают клетки, в том числе фибробласты (которые отвечают за воссоздание соединительной ткани) от негативного воздействия свободными радикалами информационного центра клетки.

Антиоксиданты являются веществами, позволяющими человеческому телу извлекать и связывать оксиданты. Подобно другим антиоксидантам катехины, найденные в зеленом чае, избирательно подавляют специфическую активность ферментов, которая приводит к раку. Они также могут определять и восстанавливать изменения ДНК, вызванные оксидантами. В настоящее время в качестве антиоксидантов используют:

— витамины-антиоксиданты: бета-каротин (про-витамин) и другие каротиноиды (астаксантин, ликопен, лютеин и др.), А, С, Е. Каждый витамин выполняет свою собственную функцию. Поэтому необходимо, чтобы каждый из них присутствовал в ваших продуктах питания.

— Бета-каротин. Содержится в яркоокрашенных зеленых, оранжевых, желтых фруктах и овощах. Например, в морковке, тыкве, абрикосах, манго, папайе, красном перце, шпинате, капусте, репе, брокколи, дыне.

— Витамин С. Содержится в красном и зеленом перце, киви, апельсинах, грейпфрутах, томатах, картофеле, капусте, клубнике и т. д.

— Витамин Е. Также известный как токоферол содержится в любой растительной пище, но особенно богаты им растительные масла (естественно растительного отжима). Например, оливковое, кукурузное, арахисовое, кунжутное, миндальное, масло пшеничных зародышей.

— микроэлементы-антиоксиданты: селен, цинк, медь, хром, марганец и др.
— натуральные (растительные) антиоксиданты или биофлавоноиды: экстракты из косточек или кожуры красного винограда, коры деревьев, черники, зелёного чая и т.п.
— аминокислоты-антиоксиданты: метионин, тирозин, цистеин, таурин и др.

Сильными и популярными антиоксидантами являются также янтарная и липоевая кислоты, коэнзим Q10, мелатонин и др.

Глюкозамин — основной строительный материал для соединительной ткани. Стимулирует выработку клетками хряща того же коллагена , а так же такого важного вещества как хондроитин .В то же время произведенный хондроитин после распада разложится на несколько составляющих , одна из которых – глюкозамин .

Сам глюкозамин вырабатывается клетками хряща из глюкозы и важной аминокислоты — глютамина.

Глюкозамин в продуктах питания

Глюкозамин присутствует во многих продуктах , но имеет свойство разрушаться при сильном нагреве . Основным источником глютамина могут служить хрящи, а так же продукты с высоким содержанием глютамина– куры, говядина, твердый сыр.

Хондроитин – является основным компонентом аморфного вещества хряща. Важный элемент сухожилий , связок , хрящей , кожи , кровеносных сосудов .Обладает противовоспалительными свойствами , играет важную роль при восстановлении хрящевых тканей . Благодаря хондроитину удерживается жидкость в хрящевой ткани . При распаде дает глюкозамин как одну из составляющих.

Хондроитин вырабатывается клетками хрящевой ткани при использовании того же глюкозамина.

Хондроитин в продуктах питания

Содержится в коже , сухожилиях и хрящах животного происхождения и в еще большей степени в рыбе (особенно лосось, семга) . Именно по этой причине хондроитин-добавки производятся из хрящей лососевых

Источник

Виды соединительной ткани их характеристика (Таблица)

Соединительные ткани — это большая группа тканей, которая включает в себя собственно соединительные ткани (рыхлая, волокнистая и плотная волокнистая, неоформленная и оформленная), ткани со специальными свойствами (ретикулярная, пигментная, жировая), твердые скелетные (костная, хрящевая) и жидкие (кровь и лимфа). Соединительные ткани выполняют различные функции: опорную (или механическую), трофическую (или питательную), защитную.

строение соединительной ткани схема

Таблица виды соединительной ткани

Виды соединительной ткани

Клеточный состав (собственные и пришлые)

Характеристика межклеточного вещества

Локализация соединительной ткани

Эмбриональный зачаток соединительной ткани (мезенхима)

Мезенхимные клетки образуют трехмерную сеть. Имеется небольшое количество мезенхимных фибробластов

Основное вещество аморфное, жепатинообразной консистенции, большое количество тонких коллагеновых и немного эластических волокон. Волокна очень тонкие, образуют широкопетлистую сеть, связанную с клетками

У эмбриона в межорганных промежутках

Эмбриональная соединительная ткань (слизистая)

Мукоциты образуют трехмерную сеть

Основное вещество аморфное, имеются тонкие коллагеновые волокна

Собственно соединительные ткани

Фибробласт, фиброцит, ре-тикулоцит, макрофагоцит, тканевый базофил, плазмо-цит, адипоцит, пигментная клетка, гранулоцит, лимфоцит, моноцит

Аморфное вещество содержит гликозаминогликаны, протео-гликаны; волокна (коллагеновые, эластические, ретикулярные)

Во всех органах

Плотная волокнистая (оформленный тип)

Коллагеновые волокна расположены в одной плоскости в виде параллельных пучков. Небольшое количество эластических и ретикулярных волокон

Сухожилия, связки, фасции

Плотная волокнистая (неоформленный тип)

Коллагеновые волокна расположены в различных направлениях. Небольшое количество эластических и ретикулярных волокон

Футляры нервов, твердая оболочка мозга, капсулы органов, трабекулы, склера, надкостница, суставные капсулы, клапаны сердца, перикард

Эластические волокна. Эластические волокна образуют окон-чатые эластические мембраны. Между волокнами — тонкая сеть коллагеновых и ретикулярных волокон

Аорта и другие артерии эластического типа, желтые связки, эластический конус гортани

Соединительные ткани со специальными свойствами

Органы кроветворения и иммунной системы

Однокапельные адипоциты (жировые клетки)

Ретикулярные и коллагеновые волокна, аморфное вещество

Мелкие многокапельные адипоциты

Тоже что и жировая белая ткань

У новорожденных и детей грудного возраста в забрю-шинном пространстве

Отростчатые пигментные клетки (меланоциты)

Рыхлая волокнистая соединительная ткань

Радужка и сосудистая оболочка глаза, кожа сосков, мошонки, вокруг заднего прохода

Твердые скелетные соединительные ткани

Хондроциты образуют изогенные группы

Гомогенное прозрачное аморфное вещество (гель, гликозами-но- и протеогликаны, гликопротеины); коллагеновые волокна

Реберные и суставные хрящи, хрящи воздухоносных путей, носовые хрящи

То же, изогенные группы встречаются реже

Эластические волокна, расположенные в разных направлениях

Ушная раковина, надгортанник, рожковидный и клиновидный хрящи, голосовые отростки черпаловидных хрящей гортани, наружный слуховой проход, слуховая труба

Хрящевая волокнистая (коллагеновая)

Хондроциты расположены в лакунах

Коллагеновые волокна, расположены в направлении сил давления и натяжения. Мало аморфного вещества

Межпозвоночные диски, лобковый симфиз, в участках прикрепления сухожилий к хрящам

Остеокласт (относится к системе мононуклеарных фагоцитов)

Костный матрикс состоит из небольшого количества аморфного вещества (гликозаминопро-теогликаны, гликопротеины) и коллагеновых волокон

Костные пластинки образованы костными клетками и аморфным веществом, пропитанным солями кальция

Все кости скелета

Грубые пучки коллагеновых (оссеиновых) волокон

В заросших швах черепа и в зоне прикрепления сухожилий к костям

Жидкие соединительные ткани

Эритроциты, тромбоциты, лейкоциты

Плазма крови (содержит белки, соли, ферменты, а также клетки крови)

В кровеносных сосудах

_______________

Источник информации: Биология для поступающих в вузы / Г.Л. Билич, В.А. Крыжановский. — 2008.

Источник

Читайте также:  Основные компоненты и разновидности компьютерных сетей