Меню

Идеальный газ законы и формулы



Идеальный газ, законы и формулы

Олимпиадные задания для учащихся 1 — 11 классов

Идеальный газ, законы и формулы

Идеальный газ, законы и формулы, общие сведения.

Масса и размеры молекул.

Средний объём пространства, занимаемого молекулой ≈ 2,7 · 10 -29 м 3 .

Средняя масса молекулы ≈ 2,4 · 10 -26 кг.

Идеальный газ.

Теплообмен.

Нагревание и охлаждение.

Количество теплоты:

m — масса тела, Δt — измение температуры при нагревании (охлаждении), c — удельная теплоёмкость — энергия, необходимая для нагревания тела массой в 1 кг на 1° C.

Единица удельной теплоёмкости — 1 Дж/кг.

Плавление и кристаллизация

λ — удельная теплота плавления, измеряется в Дж/кг.

Парообразование и конденсация:

r — удельная теплота парообразования, измеряется в Дж/кг.

Сгорание

k — удельная теплота сгорания (теплоотводная способность), измеряется в Дж/кг.

Внутренняя энергия и работа.

Работа, совершаемая самой системой, положительна, внешними силами — отрицательна.

Основы молекулярно-кинетической теории идеального газа

Основное уравнение молекулярно-кинетической теории идеального газа:

p — давление, n — концентрация молекул, m — масса молекулы.

Температура.

Температурные шкалы.

Связь температуры газа с кинетической энергией движения его молекул:

k — постоянная Больцмана; k = 1,38 · 10 -23 Дж/К.

Давление газа:

Уравнение состояния идеального газа:

N = n · V — общее число молекул.

Уравнение Менделеева-Клайперона:

m — масса газа, M — масса 1 моля газа, R — универсальная газовая постоянная:

NА — постоянная Авогадро = 6,02 · 10 23 моль -1 — число молекул в 1 моле вещества.

Изометрический процесс. закон Бойля-Мариотта.

Изобарный процесс. Закон Гей-Люссака.

V — исходный объём, α — изобарный коэффициент расширения, одинаковый для всех газов (α ≈1/273 К -1 )

Источник

Связь между давлением, температурой, объемом и количеством молей газа («массой» газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

Связь между давлением, температурой, объемом и количеством молей газа («массой» газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

Ограничения практической применимости:

  • температуры ниже -100°C и выше температуры диссоциации / разложения
  • давления выше 90 бар
  • вакуум глубже чем 99%

Внутри диапазона точность уравнения превосходит точность обычных современных инженерных средств измерения. Для инженера важно понимать, что для всех газов возможна существенная диссоциация или разложение при повышении температуры.

Давайте решим парочку задач относительно газовых объемных и массовых расходов в предположении, что состав газа не изменяется (газ не диссоциирует) — что верно для большинства газов в указанных выше пределах применимости.

1) Доставка объемов газа одинаковой массы при одинаковом давлении но различных температурах.

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется объем газа.

Пусть счетчик (расходомер) в точке доставки дает объемные накопленные расходы V1 и V2, при температурах, соответственно, T1 и T2 и, пусть T1 V2 для одинаковых количеств газа при данных условиях. Попробуем сформулировать несколько важных на практике выводов для данного случая:

  • показатели объемного счетчика газа тем «весомее», чем выше давление
  • выгодно поставлять газ низкого давления
  • выгодно покупать газ высокого давления

Как с этим бороться? Необходима хотя бы простая компенсация по давлению, т.е в считающее устройство должна подаваться информация с дополнительного датчика давления.

Источник

Идеальные газы таблица зависимость температуры от давления идеального

Связь между давлением, температурой, объемом и количеством молей газа («массой» газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

Ограничения практической применимости:

  • температуры ниже -100°C и выше температуры диссоциации / разложения
  • давления выше 90 бар
  • вакуум глубже чем 99%

Внутри диапазона точность уравнения превосходит точность обычных современных инженерных средств измерения. Для инженера важно понимать, что для всех газов возможна существенная диссоциация или разложение при повышении температуры.

Читайте также:  Европейская таблица размеров джинс для мужчин

Давайте решим парочку задач относительно газовых объемных и массовых расходов в предположении, что состав газа не изменяется (газ не диссоциирует) — что верно для большинства газов в указанных выше пределах применимости.

1) Доставка объемов газа одинаковой массы при одинаковом давлении но различных температурах.

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется объем газа.

Пусть счетчик (расходомер) в точке доставки дает объемные накопленные расходы V1 и V2, при температурах, соответственно, T1 и T2 и, пусть T1 V2 для одинаковых количеств газа при данных условиях. Попробуем сформулировать несколько важных на практике выводов для данного случая:

  • показатели объемного счетчика газа тем «весомее», чем выше давление
  • выгодно поставлять газ низкого давления
  • выгодно покупать газ высокого давления

Как с этим бороться? Необходима хотя бы простая компенсация по давлению, т.е в считающее устройство должна подаваться информация с дополнительного датчика давления.

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Наблюдай внимательно за природой, и ты будешь всё понимать намного лучше.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Урок 15. Лекция 15. Идеальный газ

Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном.

Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:

  • все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
  • частицы находятся в непрерывном тепловом движении;
  • между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.

Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.

Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.

Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

Существует еще одно состояние вещества – плазма. Плазма — частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

Читайте также:  Web фон ячейки таблицы

Модель идеального газа. Связь между давлением и средней кинетической энергией.

Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.

Идеальный газэто газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)

Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.

Свойства идеального газа:

  1. расстояние между молекулами много больше размеров молекул;
  2. молекулы газа очень малы и представляют собой упругие шары;
  3. силы притяжения стремятся к нулю;
  4. взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
  5. молекулы этого газа двигаются беспорядочно;
  6. движение молекул по законам Ньютона.

Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V, давление p и температура T.

Объем газа обозначается V. Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м 3 .

Давлениефизическая величина, равная отношению силы F, действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента.

p = F/S Единица давления в СИ паскаль [Па]

До настоящего времени употребляются внесистемные единицы давления:

техническая атмосфера 1 ат = 9,81-104 Па;

физическая атмосфера 1 атм = 1,013-105 Па;

миллиметры ртутного столба 1 мм рт. ст.= 133 Па;

1 атм = = 760 мм рт. ст. = 1013 гПа.

Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени дей­ствует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.

Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.

Используя модель идеального газа, можно вычислить давление газа на стенку сосуда.

В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υx скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υy скорости, параллельная стенке, остается неизменной.

Приборы, измеряющие давление, называют манометрами. Манометры фиксиру­ют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.

Жидкостные манометры:

  1. открытый – для измерения небольших давлений выше атмосферного
  2. закрытый — для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума

Металлический манометр – для измерения больших давлений.

Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.

Основное уравнение молекулярно-кинетической теории идеального газа.

Читайте также:  Формула муавра лапласа для интервала значений таблица

Основное уравнение МКТ: давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул

p = 1/3·mn·v 2

m — масса одной молекулы газа;

n = N/V – число молекул в единице объема, или концентрация молекул;

v 2 — средняя квадратичная скорость движения молекул.

Так как средняя кинетическая энергия поступательного движения молекул E = m*v 2 /2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m· v 2 )/2 = 2/3·E·n

Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.

Так как m·n = m·N/V = m/V = ρ, где ρ – плотность газа, то имеем p = 1/3· ρ· v 2

Объединенный газовый закон.

Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

Всякое изменение состояния газа называется термодинамическим процессом.

В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом.

Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

p = nkT

Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V, давлением p, температурой T и количеством вещества ν. Для этого нужно использовать равенства

где n – концентрация молекул, N – общее число молекул, V – объем газа

Тогда получим или

Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона.

Уравнение Клайперона можно записать в другой форме.

p = nkT,

Здесь N – число молекул в сосуде, ν – количество вещества, NА – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Произведение постоянной Авогадро NА на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R.

Ее численное значение в СИ R = 8,31 Дж/моль·К

называется уравнением состояния идеального газа.

В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.`

Для одного моля любого газа это соотношение принимает вид: pV=RT

Установим физический смысл молярной газовой постоянной. Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

Запишем уравнение pV=RT для нагретого газа: p ( V + ΔV ) = R (T + 1)

и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим pΔV = R

ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

pS = F – сила давления.

Получим FΔh = R, а произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

Таким образом, R = A.

Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Источник