Меню

Историческое развитие чисел на Руси

Развитие понятия числа

1.3 Развитие понятия числа

При счете отдельных предметов единица есть наименьшее число; делить ее на доли не нужно, а часто и невозможно (при счете камней прибавление к двум камням половины третьего дает три камня, а не два с половиной). Однако делить единицу на доли приходится уже при грубых измерениях величин, например при измерении длины шагами (два с половиной шага и т.д.). Поэтому уже в отдаленные эпохи создалось понятие дробного числа.

Так, в вавилонской системе мер веса (и денег) 1 талант составлял 60 мин, а одна мина – 60 шекелей. Соответственно с этим в вавилонской математике широко употреблялись шестидесятиричные дроби. В древнеримской весовой (и денежной) системе 1 асс делился на 12 унций; сообразно с этим римляне пользовались двенадцатиричными дробями.

Наши «обыкновенные дроби» широко употреблялись древними греками и индийцами. Правила действий с дробями, изложенные индийским ученым Брамагуптой (VIII век н.э.), лишь немногим отличаются от наших. Наша запись дробей тоже совпадает с индийской; только дробной черты индийцы не писали; греки записывали сверху знаменатель, а снизу числитель.

Индийской обозначение дробей и правила действий над ними были усвоены в IX веке в мусульманских странах благодаря узбекскому ученому Мухаммеду Хорземскому (аль-Хваризми). Они были перенесены в Западную Европу итальянским купцом и ученым Леонардо Фибоначчи из Пизы (XIII век).

Наряду с «обыкновенными» дробями до XVII века применялись (преимущественно в астрономии) шестидесятиричные дроби. Они были вытеснены десятичными дробями, введенными голландским купцом и выдающимся инженером-ученым Симоном Стевином (1548 — 1620).

В дальнейшем оказалось необходимым еще больше расширить понятие числа; последовательно появились числа иррациональные, отрицательные и комплексные.

Довольно поздно к семье чисел присоединился нуль. Первоначально слово «нуль» означало отсутствие числа (буквальный смысл латинского слова nullum – «ничто»). Для того чтобы это «ничто» считать числом, появились основания лишь в связи с рассмотрением отрицательных чисел.

1.4 Системы нумерации некоторых народов

1.4.1 Древнегреческая нумерация

В древнейшее время в Греции была распространена т.н. аттическая нумерация. Числа 1, 2, 3, 4 обозначались черточками , , , . Число 5 записывалось знаком (древнее начертание буквы «пи», с которой начинается слово «пенте» – пять); числа 6, 7, 8, 9 обозначались , , , . Число 10 обозначалось (начальной буквой слова «дека» – десять). Числа 100, 1000 и 10000 обозначались , , . Числа 50, 500, 5000 обозначались комбинациями знаков 5 и 10, 5 и 100, 5 и 1000. Общую запись чисел в аттической нумерации иллюстрирует пример 1.1.

Пример 1.1 Запись чисел в аттической системе счисления

Источник

Развитие понятия числа таблица

Знания людей заслуживает имени Науки

в зависимости от того, какую роль играет в нем число.
Э. Борель.

На первых этапах существования человеческого общества числа, открытые в процессе практической деятельности, служили для примитивного счёта предметов, дней, шагов и т.п. В первобытном обществе человек нуждался лишь в нескольких первых числах. Но с развитием цивилизации ему потребовалось изобретать всё большие и большие числа, уметь их записывать. Этот процесс продолжался на протяжении многих столетий и потребовал напряженного интеллектуального труда.

С зарождением обмена продуктами труда у людей появилась необходимость сравнить число предметов одного вида с числом предметов другого вида. На этом этапе возникли понятия «больше», «меньше», «столько же» или «равно». Вероятно, на этом же этапе развития люди стали складывать числа. Значительно позже они научились вычитать числа, затем умножать и делить их. Даже в средние века деление чисел считалось очень сложным и служило признакам чрезвычайно высокой образованности человека.

С открытием действий с числами или операций над ними возникла наука арифметика. Её возникновению и развитию способствовали практические потребности — строительство разнообразных сооружений, торговля, мореходство и пр. Долгое время арифметике имели дело с числами относительно небольшими. Например, в системе счисления Древней Греции самым большим числом, которое имело название, была «мириада» — 10 000. Ещё в III в. до н. э. люди не знали, что натуральный ряд чисел бесконечен. Вот тогда — то Архимед в своём трактате «Исчисление песчинок» — «Псаммит» разработал систему, которая позволила выразить сколь угодно большое число, и показал, что натуральный ряд чисел был бесконечен. Следует заметить, что первое представление о потенциального бесконечно малом и бесконечно большом дал Анаксагор (около 500 — 428 гг. н. э.). Древнегреческий философ Аристотель (384 — 322 гг. до н. э.) в своих высказываниях, допуская бесконечность математического пространства, считал математическую прямую бесконечной. Аналогичных принципов придерживался и Евклид.

Математики Древней Греции, занявшись проблемами больших чисел, совершили скачок от конечного к бесконечному. Смелая идея бесконечности, которая шла вразрез с философскими воззрениями о конечности Вселенной, открыла в математике широкие возможности, хотя и вызвала значительные противоречия, некоторые из них не раскрыты и по сей день.

В IV в. до н. э. греческие математики из школы Пифагора открыли несоизмеримые отрезки, длины которых они не могли выразить ни целым, ни дробным числом. Одним из таких отрезков была диагональ квадрата со сторонами, равными единице. Теперь длину такого отрезка мы выражаем через √ 2 . Учёные того времени относили к числам только рациональные и не признавали иррациональные числа. Они нашли выход в том, что под числами стали понимать длины отрезков прямых.

Геометрическое выражение чисел на первых этапах сыграло положительную роль в дальнейшем продвижении математики, но затем вызвало ряд затруднений и стало тормозом в прогрессе арифметики и алгебры.

Потребовалось не одна сотня лет для того, чтобы математики смогли осмыслить понятие иррационального числа и выработать способ записи такого числа и приближенного значения его в виде бесконечной десятичной дроби.

Как видно, понятие числа прошло длинный путь развития: сначала целые числа, затем дробные, рациональные (положительные и отрицательные) и, наконец, действительные. (Любое число, которое можно выразить в виде конечной или бесконечной десятичной дроби, представляет собой элемент множества действительных чисел.)

Но на этом развитие не завершилось. В связи с решением уравнений математики встречались с числом, которое выражалось √ -1 . Оно получило название мнимой единицы. Долгое время мнимые числа не признавали за числа. После того как норвежский математик Гаспар Вессель (1745 — 1818) нашел возможность представить мнимое число геометрически, то так называемые «мнимые числа» получили своё место в множестве комплексных чисел. Однако и раньше интерпретация этих чисел имелась у Даламбера и Эйлера, которые ставили в соответствие комплексным числам точки плоскости и некоторые функции комплексного переменного истолковали геометрически.

Источник



История развития числа. Развитие понятия числа

Развитие представлений о числе составляет важную часть нашей истории. Оно является одним из основных математических понятий, которое позволяет выразить результаты измерения или счета. Исходным для множества математических теорий служит понятие числа. Оно применяется также в механике, физике, химии, астрономии и множестве других наук. Кроме того, в повседневной жизни мы постоянно пользуемся числами.

Читайте также:  Сравнение семей Ростовых и Болконских в романе

Появление цифр

Последователи учения Пифагора считали, что числа содержат в себе мистическую сущность вещей. Эти математические абстракции руководят миром, устанавливая порядок в нем. Пифагорейцы предполагали, что все существующие в мире закономерности можно выразить с помощью чисел. Именно с Пифагора теория развития чисел стала интересовать множество ученых. Символы эти считались основой материального мира, а не просто выражениями некоторого закономерного порядка.

История развития числа и счета началась с того, что был создан практический счет предметов, а также измерения объемов, поверхностей и линий.

Постепенно формировалось понятие о натуральных числах. Этот процесс осложнялся тем, что первобытный человек не умел отделять от конкретного представления абстрактное. Счет в результате этого оставался долгое время лишь вещественным. Использовались пометки, камешки, пальцы и т. п. Применяли для запоминания его результатов узелки, зарубки и пр. После изобретения письменности история развития числа была отмечена тем, что начали использовать буквы, а также особые значки, применявшиеся для сокращенного изображения на письме больших чисел. Обычно воспроизводился при таком кодировании принцип нумерации, аналогичный использовавшемуся в языке.

Позднее появилась идея считать десятками, а не только единицами. В 100 различных индоевропейских языках названия чисел от двух до десяти сходны, как и названия десятков. Следовательно, очень давно появилось понятие абстрактного числа, еще до того, как языки эти были разделены.

Счет по пальцам первоначально был широко распространен, и это объясняет то, что у большинства народов при образовании числительных особое положение занимает символ, обозначающий 10. Десятичная система счисления происходит именно отсюда. Хотя существуют и исключения. Например, 80 в переводе с французского языка — «четыре двадцатки», а 90 — «четыре двадцатки плюс десять». Употребление это восходит к счету по пальцам ног и рук. Устроены аналогично числительные абхазского, осетинского и датского языков.

В грузинском языке счет двадцатками еще яснее. Ацтеки и шумеры считали первоначально пятерками. Существуют также и более экзотические варианты, которыми отмечена история развития числа. Например, в научных расчетах вавилоняне применяли шестидесятеричную систему. В так называемых «унарных» системах число образуется с помощью повторения знака, символизирующего единицу. Древними людьми такой способ применялся примерно 10-11 тыс. лет до н. э.

Существуют также непозиционные системы, в которых количественные значения используемых для записи символов не зависят от их места в коде числа. Используется сложение цифр.

Древнеегипетские числа

Знание математики Древнего Египта основано сегодня на двух папирусах, которые датируются приблизительно 1700 годом до н. э. Математические сведения, излагаемые в них, восходят к более древнему периоду, около 3500 года до н. э. Египтяне эту науку использовали для того, чтобы вычислять вес различных тел, объемы зернохранилищ и площади посевов, размеры податей, а также необходимое для возведения сооружений количество камней. Однако основной областью применения математики была астрономия, связанные с календарем расчеты. Календарь необходим был для определения дат различных религиозных праздников, а также предсказания разливов Нила.

Письменность в Древнем Египте была основана на иероглифах. В тот период система счисления уступала вавилонянской. Пользовались египтяне непозиционной десятичной системой, в которой количеством вертикальных черт обозначались числа от 1 до 9. Индивидуальные символы вводились для степеней десяти. История развития числа в Древнем Египте продолжилась следующим образом. С возникновением папируса было введено иератическое письмо (то есть скоропись). Специальный символ использовался в нем для обозначения чисел от 1 до 9, а также кратных 10, 100 и т. д. Развитие рациональных чисел в то время происходило медленно. Они записывались, как сумма дробей с равным единице числителем.

Числа в Древней Греции

На использовании различных букв алфавита была основана греческая система счисления. История натуральных чисел в этой стране отмечена тем, что употреблявшаяся с 6-3 веков до н. э. аттическая система для обозначения единицы применяла вертикальную черту, а 5, 10, 100 и т. д. писались с помощью начальных букв их названий на греческом языке. В ионической системе, более поздней, использовались для обозначения чисел 24 действующие буквы алфавита, а также 3 архаические. Как первые 9 чисел (от 1 до 9) обозначались кратные 1000 до 9000, однако перед буквой ставилась при этом вертикальная черта. «М» обозначались десятки тысяч (от греческого слова «мириои»). После нее следовало число, на которое следовало умножить 10000.

В Греции в 3 веке до н. э. возникла числовая система, в которой собственный знак алфавита соответствовал каждой цифре. Греки, начиная с 6 века, в качестве цифр стали использовать первые десять знаков своего алфавита. Именно в этой стране не только активно развивалась история натуральных чисел, но и зародилась математика в современном ее понимании. В других государствах того времени она применялась либо для обыденных нужд, либо для различных магических ритуалов, с помощью которых выясняли волю богов (нумерология, астрология и т. п.).

Римская нумерация

В Древнем Риме использовалась нумерация, которая под именем римской сохранилась и до сегодняшних дней. Мы ее применяем для обозначения юбилейных дат, веков, наименования конференций и съездов, нумерации строф стихотворения или глав книги. С помощью повторения цифр 1, 5, 10, 50, 100, 500, 1000, обозначавшихся у них, соответственно, как I, V, X, L, C, D, M записываются все целые числа. Если большая цифра находится перед меньшей, они суммируются, если же перед большей стоит меньшая, то последняя вычитается из нее. Одну и ту же цифру нельзя ставить более трех раз. Долгое время страны Западной Европы пользовались в качестве основной римской нумерацией.

Позиционные системы

Это такие системы, в которых количественные значения символов зависят от их места в коде числа. Основные их достоинства — простота выполнения различных арифметических операций, а также небольшое число символов, необходимых для записи чисел.

Достаточно много существует таких систем. Например, двоичная, восьмеричная, пятеричная, десятичная, двадцатеричная и др. Каждая имеет собственную историю.

Система, существовавшая у инков

Кипу — это древняя счетная и мнемоническая система, которая существовала у инков, а также их предшественников в Андах. Она довольно своеобразна. Это сложные узелки и веревочные сплетения, изготовленные из шерсти лам и альпак, либо из хлопка. Может быть в кипу от нескольких свисающих нитей до двух тысяч. Использовалась она посыльными для передачи сообщений по имперским дорогам, а также в различных аспектах жизни общества (как топографическая система, календарь, для фиксации законов и налогов и др.). Читали и писали кипу толкователи, специально обученные. Они ощупывали узелки пальцами, беря в руки кипу. Большая часть информации в ней — числа, представленные в десятичной системе.

Читайте также:  Как я могу найти какие таблицы ссылаются на данную таблицу в Oracle SQL Developer

Вавилонские цифры

На глиняных табличках клинописными значками писали вавилоняне. Они дошли до наших дней в немалом количестве (более 500 тыс., около 400 из которых связаны с математикой). Следует отметить, что корни культуры вавилонян были унаследованы в значительной степени от шумеров — счетная методика, клинописное письмо и т. п.

Намного совершеннее египетской была вавилонская система счета. Вавилоняне и шумеры применяли 60-ричную позиционную, которая сегодня увековечена в делении круга на 360 градусов, а также часа и минуты на 60 минут и секунд соответственно.

Счет в Древнем Китае

Развитие понятия о числе осуществлялось и в Древнем Китае. В этой стране цифры обозначались с помощью специальных иероглифов, появившихся примерно 2 тыс. лет до н. э. Однако окончательно начертание их установилось лишь к 3 веку до н. э. И сегодня применяются эти иероглифы. Сначала мультипликативным был способ записи. Число 1946, например, можно представить, используя римские цифры вместо иероглифов, как 1М9С4Х6. Но расчеты на практике производились на счетной доске, где была иной запись чисел — позиционной, как в Индии, а не десятичной, как у вавилонян. Пустым местом обозначался нуль. Лишь около 12 века н. э. появился для него специальный иероглиф.

История счисления в Индии

Многообразны и широки достижения математики в Индии. Эта страна внесла большой вклад в развитие понятия о числе. Именно здесь была изобретена десятичная позиционная система, привычная нам. Индийцы предложили символы для записи 10 цифр, с некоторыми изменениями использующиеся в наши дни повсеместно. Именно в этой стране были заложены также основы десятичной арифметики.

Современные цифры произошли от индийских значков, начертание которых использовалось еще в 1 веке н. э. Изначально индийская нумерация была изысканной. Средства для записи чисел до десяти в пятидесятой степени применялись в санскрите. Сначала для цифр использовалась так называемая «сиро-финикийская» система, а с 6 века до н. э. — «брахми», с отдельными знаками для них. Эти значки, несколько видоизменившись, стали современными цифрами, называемыми сегодня арабскими.

Неизвестный индийский математик примерно в 500 году н. э. изобрел новую систему записи — десятичную позиционную. Выполнение различных арифметических действий в ней было неизмеримо проще, чем в других. Индийцы в дальнейшем применяли счетные доски, которые были приспособлены к позиционной записи. Ими были разработаны алгоритмы арифметических операций, в том числе получения кубических и квадратных корней. Индийский математик Брахмагупта, живший в 7-м веке, ввел в употребление отрицательные числа. Далеко продвинулись индийцы в алгебре. Символика их более богата, чем у Диофанта, хотя несколько засорена словами.

Историческое развитие чисел на Руси

Нумерация служит главной предпосылкой математических знаний. Она имела разный вид у различных народов древности. Возникновение и развитие числа на раннем этапе совпадало в различных частях света. Сначала все народы обозначали их зарубками на палочках, называвшихся бирками. Этот способ записи налогов или долговых обязательств использовался малограмотным населением всего мира. Делали нарезы на палочке, которые соответствовали сумме налога или долга. Затем ее раскалывали пополам, оставив одну половину у плательщика или должника. Другая хранилась в казначействе или у заимодавца. Обе половинки при расплате проверяли складыванием.

Цифры появились с возникновением письменности. Они напоминали сначала зарубки на палках. Потом появились специальные значки для некоторых из них, таких как 5 и 10. Все нумерации в то время были не позиционными, а напоминающими римскую. В Древней Руси, в то время как в государствах Западной Европы применяли римскую нумерацию, пользовались алфавитной, сходной с греческой, так как наша страна, подобно другим славянским, как известно, находилась в культурном общении с Византией.

Числа от 1 до 9, а потом десятки и сотни в древнерусской нумерации изображались буквами славянского алфавита (кириллицы, введенной в девятом веке).

Некоторые исключения были из этого правила. Так, 2 обозначалось не «буки», второй по счету в алфавите, а «веди» (третьей), поскольку буква З по-старорусски передавалась звуком «в». Находившаяся в конце алфавита «фита» обозначала 9, «червь» — 90. Отдельные буквы не использовались. Для обозначения того, что знак этот является цифрой, а не буквой, над ним сверху писали знак, называемый «титло», «

». «Тьмы» назывались десятки тысяч. Обозначали их, обводя кружками знаки единиц. Сотни тысяч именовались «легионами». Их изображали, кружками из точек обводя знаки единиц. Миллионы — «леодры». Эти знаки изображались как обведенные в кружки из запятых или лучей.

Дальнейшее развитие натурального числа произошло в начале семнадцатого века, когда индийские цифры стали известны на Руси. Вплоть до восемнадцатого века использовалась в России славянская нумерация. После этого она была заменена современной.

История комплексных чисел

Эти числа были введены впервые в связи с тем, что была выделена формула вычисления корней кубического уравнения. Тартальей, итальянский математик, получил в первой половине шестнадцатого века выражение расчета для корня уравнения через некоторые параметры, для нахождения которых нужно было составить систему. Однако было выяснено, что подобная система имела решение не для всех кубических уравнений в действительных числах. Это явление объяснил Рафаэль Бомбелли в 1572 году, что было по сути введением комплексных чисел. Однако полученные результаты долгое время считались сомнительными многими учеными, и лишь в девятнадцатом веке история комплексных чисел ознаменовалась важным событием — их существование было признано после появления трудов К. Ф. Гаусса.

Источник

Этапы исторического развития числа

1 этап. Сравнение групп предметов по количеству с помощью установления взаимнооднозначного соответствия между элементами множеств (1 шкура — 1 горшок).

2 этап. Использование множеств-посредников для сравнения по количеству (зарубки на палке о количестве в прошлом году).

3 этап. Использование универсальных множеств для обозначения кол-ва (1 луна; 5 пальцев на руке: луна оленей; рука оленей).

4 этап. Возникновение числительных и нумерации, абстрагирование числа от конкретного множества.

5 этап. Становление теорий числа: количественной и порядковой.

2. Основные идеи количественной и порядковой теорий натурального числа

Количественная теория натурального числа:

Г. Кантор, XIX в. Основные понятия – множество, взаимнооднозначное соответствие.

В том случае, если каждому элементу множества Х соответствует единственный элемент из множества У, то говорят, что между этими множествами установлено взаимнооднозначное соответствие.

Х У

Рассмотрим 2 бесконечных множества:

(1) множество натуральных чисел 1, 2, 3, 4, 5,…n, …

(2) множество четных натур. чисел 2, 4, 6,…2n, …( подмножество (1));

Так как ряд четных чисел можно пронумеровать с помощью натуральных чисел, то между этими двумя множествами можно установить взаимнооднозначное соответствие. Если между множеством и его некоторым подмножеством нельзя установить взаимнооднозначное соответствие, то множество является конечным.

Читайте также:  Сопротивление воды что это такое

Если между двумя конечными множествами можно установить взаимнооднозначное соответствие, то эти множества называются равночисленными.

Отношение «быть равночисленными» на множестве всех множеств является рефлексивным, симметричным, транзитивным, а значит, является отношением эквивалентности. Поэтому отношение «быть равночисленным» разбивает множество всех множеств на классы. В эти классы попадут самые различные множества. Общее между ними – одинаковое количество элементов (в класс «5» — 5 цветов, 5 пальцев).

Натуральным числом называют общее свойство класса не пустых, конечных, равночисленных множеств.

Покажем, как операции над числами определяются через операции над множествами. Обозначим через n(А) количество элементов в множестве А.

Введем операцию сложения над числами через операцию объединения над множествами.

Суммой чисел a и b называется количество элементов в объединении множеств А и В, которое равно а + b = n(АÈВ) = n(А) + n(В), при условии, что АÇВ = Æ.

Порядковая теория натурального числа:

Джузеппе Пеано, XIX в. Основные понятия: единица, операции: непосредственно следовать за, сложение, умножение.

В основе теории – аксиомы Пеано, которые являются свойствами натурального ряда чисел.

1 аксиома. Единица непосредственно не следует ни за каким натуральным числом.

2 аксиома. Любое натуральное число непосредственно следует не более чем за одним натуральным числом.

3 аксиома. Если к натуральному числу х добавить 1, то получим непосредственно следующее натуральное число х`, т.е. х + 1= х`.

4 аксиома. С помощью добавления единицы к натуральному числу можно получить весь ряд натуральных чисел.

Познание ребенком понятия числа происходит одновременно в рамках количественной и порядковой теорий.

Нумерации

Нумерация — графическое изображение числа.

Существуют разные способы изображения числа. У разных народов в разное время существовали разные способы изображения чисел:

Иероглифическая нумерация (Др. Египет) – числа изображались с помощью рисунков. Клинопись (Вавилон) – использовались горизонтальные и вертикальные клинышки. Буквенная нумерация – числа изображались в виде букв, первая буква числительного (penta — p). Алфавитная нумерация: а) греческая; б) славянская.

Первые 9 чисел – обозначаются первыми 9 буквами алфавита; следующие 9 букв обозначают десятки; следующие – сотни. Чтобы запись числа отличалась от записи букв, ставилась титла – волнистая черточка над буквой. Римская нумерация. Для записи числа использовались 7 знаков: I – 1, V – 5, X – 10, L – 50, C – 100, D – 500, M – 1000. Все остальные числа записывались с помощью этих знаков на основе известных правил. Арабская нумерация (пользуемся и теперь). Придумали в Индии, европейцы переняли у арабов. Используется 10 знаков – цифры: 0, 1, …., 9.

Системы счисления

Система счисления – это совокупность способов записи чисел и выполнения действий над числами.

Различают позиционные и непозиционные системы счисления. В позиционных – значение каждого знака в записи числа зависит от занимаемой им позиции (222), а в непозиционной – не зависит (CCXXII).

К позиционным системам счисления относятся: десятичная (используется 10 знаков для записи чисел – 0, 1, 2, …, 8, 9), двоичная (используется 2 знака – 0, 1) и т.п.

Правила перевода чисел из одной системы счисления в другую.

а) Чтобы перевести число из любой позиционной системы счисления в десятичную, надо представить это число в стандартном виде (например,

в десятичной системе счисления, 2134 = 2∙10 3 +1∙10 2 +3∙10 1 +4∙10 0 ,

в двоичной системе счисления, 11012 = 1∙2 3 + 1∙2 2 + 0∙2 1 +1∙2 0 ,

затем выполнить все действия: 11012 = 1∙2 3 + 1∙2 2 + 0∙2 1 +1∙2 0 = 8+4+0+1= 13.

Полученный результат и будет искомой записью числа в десятичной системе счисления, т.е. 11012 = 13.

б) Чтобы перевести число из десятичной системы счисления в любую позиционную, надо делить это число на основание системы до тех пор, пока делимое не станет меньше делителя. Затем надо записать все остатки снизу вверх (или справа налево).

Полученный результат и будет искомой записью числа, 1 6│2

Арифметические действия с многозначными числами в любой позиционной системе счисления выполняются также как и в десятичной, т.е. числа записываются в столбик разряд под разрядом. А для выполнения действий с однозначными числами

составляются таблицы. Например, в двоичной системе счисления:

Источник

Некоторые свойства натурального ряда

Натуральные числа и нуль

Этапы развития понятия натурального числа

Числа, которые используются при счете: 1, 2, 3, …, называются натуральными. Понятие натурального числа является одним из основных математических понятий. К возникновению понятия числа человека привели два вида деятельности: счет и измерение. Понятие числа возникло из практической потребности человека и прошло длительный путь в своем развитии.

Чтобы прийти к современному представлению о числе, человек прошел несколько этапов.

Множества сравниваются непосредственно путем установления взаимно однозначного соответствия между их элементами. («Яблок столько, сколько человек за столом»). Аналогично дошкольники сравнивают множества способом наложения и приложения.

Неудобство заключается в том, что оба множества должны быть одновременно обозримы.

Вводятся множества-посредники (камешки, зарубки, узелки, пальцы и др.). Человек не отвлекается от конкретных предметов, но уже выделяет общие свойства рассматриваемых множеств (например, «иметь поровну элементов»). Для ответа на вопрос «сколько?» малыши часто используют пальцы на руках как множества-посредники.

Происходит отвлечение от природы множеств-посредников, возникает понятие натурального числа. При счете человек уже не говорит: «Один камешек, два камешка, …», а называет числа: «Один, два, три, …». Это важнейший этап в развитии понятия числа. Человек научился абстрагироваться от других свойств множества, выделяя только количество элементов в нем.

Числа стали не только называть, но записывать и выполнять с ними действия. Появились различные системы счисления. Создание десятичной системы, понятия нуля в Древней Индии (V – VI вв. н.э.) решило многие проблемы в этой области и получило всемирное распространение.

Числа становятся предметом изучения, и зарождается наука арифметика (от греческого arithmos – число). Арифметика возникла в странах Древнего Востока: Вавилоне, Китае, Индии, Египте, развивалась учеными Древней Греции, стран арабского мира, европейскими учеными. Термин «натуральное число» впервые употребил римский ученый А. Боэций (около 480 – 524).

В настоящее время свойства натуральных чисел, действия над ними изучаются в разделе математики, который называется теорией чисел.

Проведите аналогию между этапами развития понятия натурального числа и деятельностью детей при формировании количественных представлений.

Процесс формирования представлений о числе у дошкольников в общих чертах повторяет основные этапы исторического развития этого понятия. Сначала дети сравнивают множества приемами наложения и приложения, затем соотносят с числом пальцев на руке, потом используют натуральные числа при счете, учатся их записывать и выполнять арифметические действия.

Заслушиваются сообщения, предварительно подготовленные студентами на тему: «Как люди научились считать».

Натуральный ряд и его свойства. Счет

Натуральное число имеет много функций, с некоторыми из них дети знакомятся довольно рано.

Источник

Adblock
detector