Меню

Качественный и количественный анализ опасностей

Качественный и количественный анализ опасностей

date image2014-01-25
views image5805

facebook icon vkontakte icon twitter icon odnoklasniki icon

Классификация опасностей.

Результат взаимо­действия человека со средой обитания может изменяться в весьма широких пределах: от позитивного до катастрофического, сопровож­дающегося гибелью людей и разрушением компонент среды обитания. Определяют негативный результат взаимодействия опасности — нега­тивные воздействия, внезапно возникающие, периодически или по­стоянно действующие в системе «человек — среда обитания».

Опасность — негативное свойство живой и неживой материи, спо­собное причинять ущерб самой материи: людям, природной среде, материальным ценностям.

При идентификации опасностей необходимо исходить из принципа «все воздействует на все». Иными словами, источником опасности может быть все живое и неживое, а подвергаться опасности также может все живое и неживое. Опасности не обладают избирательным свойством, при своем возникновении они негативно воздействуют на всю окружающую их материальную среду. Влиянию опасностей под­вергается человек, природная среда, материальные ценности. Источ­никами (носителями) опасностей являются естественные процессы и явления, техногенная среда и действия людей.

Чем выше преобразующая деятельность человека, тем выше уровень и число опасностей — вредных и травмирующих факторов, отрицатель­но воздействующих на человека и окружающую его среду.

Вредный фактор — негативное воздействие на человека, которое приводит к ухудшению самочувствия или заболеванию.

Травмирующий (травмоопасный) фактор — негативное воздействие на человека, которое приводит к травме или летальному исходу.

Перефразируя аксиому о потенциальной опасности, сформулиро­ванную О.Н. Русаком в работе, можно констатировать: Жизнедеятельность человека потенциально опасна.

Аксиома предопределяет, что все действия человека и все компо­ненты среды обитания, прежде всего технические средства и техноло­гии, кроме позитивных свойств и результатов, обладают способностью генерировать травмирующие и вредные факторы. При этом любое новое позитивное действие или результат неизбежно сопровождается возникновением новых негативных факторов.

Все опасности классифицируют по ряду признаков, а именно:

Признак классификации опасностей Вид (класс)
По видам источников возникновения Естественные Антропогенные Техногенные
По видам потоков в жизненном пространстве Энергетические Массовые (концентрационные) Информационные
По величине потоков в жизненном пространстве Допустимые Предельно допустимые Опасные
По моменту возникновения опасности Прогнозируемые Спонтанные
По длительности воздействия опасности Постоянные Переменные, периодические Кратковременные
По объектам негативного воздействия Действующие на человека Действующие на природную среду Действующие на материальные ресурсы Комплексного действия
По количеству людей, подверженных опасному воздействию Личные Групповые (коллективные) Массовые
По размерам зоны действия Локальные Региональные Межрегиональные Глобальные
По видам зоны действия Действующие в помещениях Действующие на территориях
По способности человека идентифицировать опасности органами чувств Ощущаемые Неощущаемые

В общую номенклатуру в алфавитном порядке вклю­чаются все виды опасностей: алкоголь, аномальная тем­пература воздуха, аномальная влажность воздуха, ано­мальная подвижность воздуха, аномальное барометри­ческое давление, арборициды, аномальное освещение, аномальная ионизация воздуха, вакуум, взрыв, взрыв­чатые вещества, вибрация, вода, вращающиеся части машины, высота, газы, гербициды, глубина, гиподина­мия, гипокинезия, гололед, горячие поверхности, дина­мические перегрузки, дождь, дым, движущиеся предме­ты, едкие вещества, заболевания, замкнутый объем, из­быточное давление в сосудах, инфразвук, инфракрасное излучение, искры, качка, кинетическая энергия, коррозия, лазерное излучение, листопад, магнитные поля, макроорганизмы, медикаменты, метеориты, микроорга­низмы, молнии (грозы), монотонность, нарушение газо­вого состава воздуха, наводнение, накипь, недостаточ­ная прочность, неровные поверхности, неправильные действия персонала, огнеопасные вещества, огонь, ору­жие (огнестрельное, холодное и т. д.), острые предме­ты (колющие, режущие), отравление, ошибочные дей­ствия людей, охлажденные поверхности, падение (без установленной причины), пар, перегрузка машин к ме­ханизмов, перенапряжение анализаторов, пестициды, повышенная яркость света, пожар, психологическая несовместимость, пульсация светового потока, пыль, рабочая поза, радиация, резонанс, скорость движения и вращения, скользкая повер­хность, снегопад, солнечная активность, солнце (сол­нечный удар), сонливость, статические перегрузки, ста­тическое электричество, тайфуны, ток высокой частоты, туман, ударная волна, ультразвук, ультрафиолетовое из­лучение, умственное перенапряжение, ураган, ускоре­ние, утомление, шум, электромагнитное поле, эмоцио­нальный стресс, эмоциональная перегрузка, ядовитые вещества и др.

Качественный анализ опасностей проводят с целью выявления (идентификации) источников опасностей и их основных характе­ристик; определения повреждающих факторов, возникающих при действии опасности; выявления последовательности предпосылок (причин), приводящих к развитию процесса «опасность — причи­ны — нежелательные последствия», а также проведению анализа (оценке) этих нежелательных последствий. В ходе такого анализа выявляются источники повышенной опасности, определяются ма­ловероятные опасности, в случае реализации которых могут воз­никнуть и серьезные последствия, а также практически не осуще­ствимые опасности. Параллельно выбирают контрмеры, препят­ствующие реализации триады «опасность — причины — желатель­ные последствия».

Идентификацию опасностей проводят на основе системного анализа. Системой называют целостное множество (совокупность) объектов (элементов), связанных между собой определенными отношениями и взаимодействующих таким образом, что достига­ется определенный результат (цель). Целостность системы озна­чает, что она выступает относительно окружающей среды и вос­принимается как нечто единое. Признаком системности является структурированность, взаимосвязанность частей, составляющих систему, подчиненность организации всей системы определенной цели. В большинстве случаев деятельность человека системна, поскольку направлена на достижение поставленной цели, пред­принимая для этого различные промежуточные действия.

Систему можно разбить на составляющие ее элементы подси­стемы первого уровня, которые в свою очередь можно разделить на подсистемы второго уровня и т.д. Графически такую систему можно представить в виде графа (дерева), состоящего из подсистем различного уровня. Понятие элемента или подсистемы является условным и относительным, так как любой элемент в свою очередь всегда можно рассматривать как совокупность других элементов. Любая система, таким образом, может быть представлена в виде совокупности подсистем разного уровня, расположены в порядке подчиненности, т.е. имеет иерархическую структуру.

Системный анализ — это совокупность методологически средств, в основе которых лежит разделение сложных систем) на составные элементы, используемые для подготовки и обоснования решений по сложным проблемам, в данном случае — безопасности.

Цель системного анализа безопасности — выявить причины, влияющие на появление нежелательных событий (аварий, катастроф, пожаров, травм и т.п.) и разработать предупредительные мероприятия, уменьшающие вероятность их появления.

Качественному анализу изучения опасности вначале предшествует общий (предварительный) анализ, схема которого приведена на рисунке 1.

Рисунок 1 — Структура общего (предварительного) анализа опасностей.

При проведении общего (предварительного) анализа опасностей изучают основные параметры исследуемой системы, структуру и процессы, протекающие в ней. Рассмотрим этот процесс на примере технических (производственных) систем, в которых наш больший вклад в аварийность и травматизм вносят такие источники опасности, как электросиловое оборудование, средства хранения сжатых газов, токсичные, взрывчатые и легковоспламеняющиеся вещества, а также подвижное технологическое оборудование. Особое внимание при проведении общего анализа здесь уделяется именно этим источникам опасности. Далее проводят идентификацию возможного (потенциального) нежелательного события и рассматривают основные причины (предпосылки), способные привести к его возникновению, а также анализ вероятности неблагоприятных последствий.

Изучение причин возникновения нежелательных событий (причинно-следственный анализ) начинают с определения источников опасностей, конкретных предпосылок, повлекших возникновение указанных происшествий. Кроме того, определяются возможные предупредительные мероприятия, предотвращающие не желательные события.

В технических системах нежелательные события чаще всего обусловливаются последовательностью событий — предпосылок (причинная цепь) следующего вида:

— ошибка человека или отказ технологического оборудования, а также недопустимое внешнее воздействие;

— случайное появление опасного фактора в какой-либо части пространства;

— неисправность и отсутствие предусмотренных на этот случай средств защиты или неточные действия людей в данных условиях;

— воздействие опасных факторов на незащищенные элементы оборудования, человека или окружающую среду.

Последовательность изучения опасностей:

Стадия I — предварительный анализ опасности (ПАО).

Шаг 1. Выявить источники опасности.

Шаг 2. Определить части системы, которые могут вызвать эти опасности.

Шаг 3. Ввести ограничения на анализ, т. е. исклю­чить опасности, которые не будут изучаться.

Стадия II — выявление последовательности опасных ситуаций, построение дерева событий и опасностей.

Источник

Качественный анализ опасностей

Качественные методы анализа опасностей включают: предварительный анализ опасностей, анализ последствий отказов, анализ опасностей с помощью дерева причин, анализ опасностей с помощью дерева последствий, анализ опасностей методом потенциальных отклонений, анализ ошибок персонала, причинно-следственный анализ.

Предварительный анализ опасностей (ПАО) обычно осуществляют в следующем порядке (рис. 4.1):

– изучают технические характеристики объекта, системы, процесса, а также используемые энергетические источники, рабочие среды, материалы; устанавливают их повреждающие свойства;

– устанавливают законы, стандарты, правила, действия которых распространяются на данный технический объект, систему, процесс;

– проверяют техническую документацию на ее соответствие законам, правилам, принципам и нормам стандартов безопасности;

– составляют перечень опасностей, в котором указывают идентифицированные источники опасностей (системы, подсистемы, компоненты), повреждающие факторы, потенциальные чепе, выявленные недостатки.

При проведении ПАО особое внимание уделяют наличию взрыво-пожароопасных и токсичных веществ, выявлению компонентов объекта, в которых возможно их присутствие, потенциальным чепе от неконтролируемых реакций и при превышении давления. После того как выявлены крупные системы технического объекта, которые являются источниками опасности, их можно рассмотреть отдельно и более детально исследовать с помощью других методов анализа, описанных ниже.

Анализ последствий отказов (АЛО) – преимущественно качественный метод идентификации опасностей, основанный на системном подходе и имеющий характер прогноза. Этим методом можно оценить опасный потенциал любого технического объекта. АЛО обычно осуществляют в следующем порядке:

– техническую систему (объект) подразделяют на компоненты;

– для каждого компонента выявляют возможные отказы, используя различные алгоритмы;

– изучают потенциальные опасности, которые может вызвать тот или иной отказ на исследуемом техническом объекте;

Читайте также:  Эксель как правильно делать таблицы

– результаты записывают в виде таблицы;

– отказы ранжируют по опасностям и разрабатывают предупредительные меры, включая конструкционные изменения.

Анализ опасностей с помощью дерева причин (АОДП) обычно выполняют в следующем порядке. Сначала выбирают потенциальный отказ системы. Затем выявляют все факторы, которые могут привести к заданному отказу (системы, подсистемы, события, связи и т. д.). По результатам этого анализа строят ориентированный граф. Вершина (корень) этого графа занумерована. Поэтому граф является деревом. Проведение АОДП возможно только после детального изучения рабочих функций всех компонентов рассматриваемой технической системы. На работу системы оказывает влияние человеческий фактор, например, возможность совершения оператором ошибки. Поэтому желательно все потенциальные инциденты – «отказы операторов» вводить в содержание дерева причин. Дерево отражает статический характер событий. Построением нескольких деревьев можно отразить их динамику, т. е. развитие событий во времени.

Анализ опасностей с помощью дерева последствий потенциального чепе (АОДПО) отличается от АОДП тем, что в случае АОДПО задается потенциальное ЧП (чрезвычайное происшествие) – инициатор, и исследуют всю группу событий – последствий, к которым оно может привести. Таким образом, между событиями имеется временная зависимость.

Рисунок 4.1. Предварительный анализ опасностей
Есть ли слабые места?
Система до исследования
Предварительный анализ
Предварительное исследование структуры
Предварительное исследование процесса
Идентификация ЧП
Анализ причин
Анализ последствий
Нужно ли более детальное исследование?
Анализ структуры и процесса
Даст ли дальнейший анализ результаты?
Логический анализ
Даст ли результаты качественный анализ?
нет
нет
да
Снижение риска
Снижение вероятности
Снижение ущерба
Определение затрат
Анализ слабых мест
Устранение слабых мест
Достаточно ли устранены слабые места?
Система остается без изменений
Система после исследования
Нужны ли изменения в системе?
Изменения в системе
да
нет
нет
нет
Есть ли данные для количест-венного анализа?
Количественный анализ
Оценка вероятностей
Оценка ущерба
Расчет риска
Приемлем ли риск?
Нужны ли изменения в системе?
нет
да
да
да
нет
нет

АОДПО можно проводить на любом объекте. Как и АОДП он требует хорошее знание объекта. Поэтому перед тем, как проводить АОДПО, необходимо тщательно изучить объект, вспомогательное оборудование, параметры окружающей среды, организационные вопросы.

Анализ опасностей методом потенциальных отклонений (АОМПО): отклонение – режим функционирования какого-либо объекта, системы, процесса или какой-либо их части (компонента), отличающийся в той или иной мере от конструкторского предназначения (замысла).

Метод потенциальных отклонений (МПО) – процедура искусственного создания отклонений с помощью ключевых слов. Этим методом анализируют опасности герметичных процессов и систем. Наибольшее распространение он получил в химической промышленности. АОМПО обычно предшествует ПАО.

После того, как с помощью ПАО были установлены источники опасностей, необходимо выявить те отклонения, которые могут привести к этим чепе. Для этого разбивают технологический процесс или герметичную систему на составные части и, создавая с помощью ключевых слов отклонения, систематично изучают их потенциальные причины и те последствия, к которым они могут привести на практике. Для проведения анализа необходимо иметь: проектную документацию на стадии проектирования; алгоритм анализа, который позволяет исследовать один за другим все компоненты; набор ключевых слов, с помощью которых выявляют ненормальный режим работы компонента.

Анализ ошибок персонала (АОП) включает следующие этапы: выбор системы и вида работы; определение цели; идентификацию вида потенциальной ошибки; идентификацию последствий; идентификацию возможности исправления ошибки; идентификацию причины ошибки; выбор метода предотвращения ошибки; оценку вероятности ошибки; оценку вероятности исправления ошибки; расчет риска; выбор путей снижения риска.

В табл. 4.1 приведены возможные виды потенциальных ошибок, совершаемых операторами. Каждому виду ошибки присвоен гипотетический номер по классификатору. В результате ошибок персонала возможны аварии (пожары, взрывы, механические повреждения, выбросы токсичных химических веществ, проливы и т. д.), несчастные случаи (летальные исходы, травмы и т. д.), катастрофы (разные степени повреждения организма и собственности), которые также могут быть классифицированы. Причины ошибок, вероятности ошибок, возможности исправления ошибок с гипотетической их классификацией даны в табл. 4.2–4.4.

Виды потенциальных ошибок и гипотетические номера по классификатору

Вид потенциальной ошибки Номер по классификатору
Пропуск действия Д1
Неправильное действие Д2
Действие в неправильном направлении ДЗ
Много действий Д4
Мало действий Д5
Неправильные действия на правильную цель Д6
Правильные действия на неправильную цель Д7
Преждевременное действие Д8
Запоздалое действие Д9
Слишком длительное действие Д10
Слишком короткое действие Д11
Неправильный порядок действий Д12
Вредное дополнительное действие Д13

Следует иметь в виду, что в основу классификации причин ошибок положены внешние и внутренние факторы, так как факторы стресса могут носить и тот и другой характер. Вероятность ошибки оператора зависит от стажа работы и наличия стрессовых условий на рабочем месте. На рис. 4.2 приведен вариант представления результатов выполнения анализа ошибок персонала.

Рис. 4.2. Вариант представления анализа ошибок оператора

Причинно-следственный анализ (ПСА) выявляет причины происшедшего ЧП. Тем не менее, ПСА является составной частью общего анализа опасностей. Он завершается прогнозом новых ЧП и составлением плана мероприятий по их предупреждению.

Гипотетическая классификация причин ошибок

Действующие факторы Причины ошибок Номер по классификатору
Внешние факторы Инструкции П1
Информация П2
Организация ПЗ
Эргономика П4
Условия работы П5
Постановка цели П6
Внутренние факторы Опыт П7
Умение П8
Знания П9
Мотивация П10
Факторы стресса Психологическое напряжение П11
Физиологическое напряжение П12

Гипотетический классификатор ориентировочных значений вероятности ошибки оператора

Номер по классифи-катору Рутинная работа Наличие инструкций Наличие стресса Новая ситуа-ция Ориентировочное значение вероятности ошибки оператора Роп
В1 Да Да Нет Нет 0,0001… 0,001
В2 Да В неполном объеме Неболь-шой Нет 0,001. 0,005
ВЗ Да В неполном объеме Некото-рый Нет 0,005. 0,01
В4 Нет Нет Некото-рый Нет 0,01. 0,05
В5 Нет Нет Да Нет 0,05… 0,5
В6 Нет Нет Да Да 0,5…1,0

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)

Источник



КАЧЕСТВЕННЫЙ АНАЛИЗ ОПАСНОСТЕЙ

Общий подход к анализу опасностей. Анализ опасностей позволяет определить источники опасностей, потенциальные н-чепе, чепе-инициаторы, последовательности развития событий, вероятности чепе, величину риска, величину последствий, пути предотвращения чепе и смягчения последствий.

На практике анализ опасностей начинают с грубого исследования, позволяющего идентифицировать в основном источники опасностей. Затем при необходимости исследования могут быть углублены и может быть проведен детальный качественный анализ. Выбор того или иного качественного метода анализа зависит от преследуемой цели, предназначения объекта и его сложности. Установление логических связей необходимо для расчета вероятностей чепе. Методы расчета вероятностей и статистический анализ являются составными частями количественного анализа опасностей. Когда удается оценить ущерб, то можно провести численный анализ риска. При анализе опасностей всегда принимают во внимание используемые материалы, рабочие параметры системы, наличие и состояние контрольно-измерительных средств. Исследование заканчивают предложениями по минимизации или предотвращению опасностей. Главные этапы анализа опасностей показаны на рис. 4.6.

Качественные методы анализа опасностей включают: предварительный анализ опасностей, анализ последствий отказов, анализ опасностей с помощью дерева причин, анализ опасностей с помощью дерева последствий, анализ опасностей методом потенциальных отклонений, анализ ошибок персонала, причинно-следственный анализ.

Предварительный анализ опасностей (ПАО) обычно осуществляют в следующем порядке:

– изучают технические характеристики объекта, системы, процесса, а также используемые энергетические источники, рабочие среды, материалы; устанавливаютих повреждающие свойства;

– устанавливают законы, стандарты, правила, действия которых распространяются на данный технический объект, систему, процесс;

– проверяют техническую документацию на ее соответствие законам, правилам, принципам и нормам стандартов безопасности;

– составляют перечень опасностей, в котором указывают идентифицированные источники опасностей (системы, подсистемы, компоненты), повреждающие факторы, потенциальные чепе, выявленные недостатки.

При проведении ПАО особое внимание уделяют наличию взрыво-пожароопасных и токсичных веществ, выявлению компонентов объекта, в которых возможно их присутствие, потенциальным чепе от неконтролируемых реакций и при превышении давления. После того как выявлены крупные системы технического объекта, которые являются источниками опасности, их можно рассмотреть отдельно и более детально исследовать с помощью других методов анализа, описанных ниже.

Анализ последствий отказов (АЛО) – преимущественно качественный метод идентификации опасностей, основанный на системном подходе и имеющий характер прогноза. Этим методом можно оценить опасный потенциал любого технического объекта. АЛО обычно осуществляют в следующем порядке:

– техническую систему (объект) подразделяют на компоненты;

Рис. 4.6. Процедура анализа опасностей

Рис. 4.7. Алгоритм исследования отказов

Рис. 4.8. Схема управления пуском машины (пример)

– для каждого компонента выявляют возможные отказы, используя, например, алгоритм, представленный на рис. 4.7;

– изучают потенциальные чепе, которые может вызвать тот или иной отказ на исследуемом техническом объекте;

– результаты записывают в виде таблицы;

– отказы ранжируют по опасностям и разрабатывают предупредительные меры, включая конструкционные изменения.

Анализ последствий отказов может выявить необходимость применения других, более емких методов идентификации опасностей. Кроме того, в результате анализа отказов могут быть собраны и документально оформлены данные о частоте отказов, необходимые для количественной оценки уровня опасностей рассматриваемого технического объекта.

Рассмотрим пример. На рис 4.8 представлена схема управления с двумя кнопками А 1 и а 2 которые при нажатии на них замыкают контакты В 1 и B 2, при этом включается катушка реле R и производится пуск машины (не показана)

Читайте также:  Гликемический индекс макдональдс таблица

Результаты выполненного АПО представлены в табл. 4.5. Отметим только, что опасность возникает, если происходит чепе –случайный пуск машины Обозначим: L – короткое замыкание между точками 1и 1‘; Аi –замыкание i-го контакта вследствие нажатия кнопки; Вi – замыкание i-го контакта вследствие механического повреждения. Тогда для чепе М– случайный пуск машины при исправном реле – имеем следующую логическую формулу: M=L+(B 1+A 1)*(B 2+A 2) .

Анализ опасностей с помощью дерева причин потенциального чепе (АОДП) обычно выполняют в следующем порядке. Сначала выбирают потенциальное чепе (например, н-чепе или какой-либо отказ, который может привести к н-чепе). Затем выявляют все факторы, которые могут привести к заданному чепе (системы, подсистемы, события, связи и т. д.). По результатам этого анализа строят ориентированный граф. Вершина (корень) этого графа занумерована потенциальным чепе. Поэтому граф является деревом. В нашем случае дерево состоит из всех тех причин-событий, которые делают возможным заданное чепе. При построении дерева можно использовать символы, представленные в табл. 4.6.

Таблица 4.5. Представление результатов
АПО для схемы управления с двумя кнопками

Компонент Наименование отказа, инцидент Генерируемые последствия Потенциальное чепе Предупредительные меры
Участок цепи — линия 11′ Короткое замыкание междуточками 11′ Включение катушки реле, случайный пуск машины Несчастный случай Инструктаж персонала
Кнопка только А 1 или только A 2, Случайное нажатие (инцидент) Без немедленных последствий Без немедленных последствий, снижается уровень безопасности Определить частоту инцидента
Контакты только B 1 или только В 2 Случайное замыкание вследствие механического повреждения То же То же Определить частоту отказа
Участок цепи–линия 22′ Обрыв провода Нельзя включить машину Без немедленных последствий Не требуется

Таблица 4.6. Элементы и символы,
используемые для построения дерева причин потенциального чепе

Проведение АОДП возможно только после детального изучения рабочих функций всех компонентов рассматриваемой технической системы. На работу системы оказывает влияние человеческий фактор, например, возможность совершения оператором ошибки. Поэтому желательно все потенциальные инциденты – «отказы операторов» вводить в содержание дерева причин. Дерево отражает статический характер событий. Построением нескольких деревьев можно отразить их динамику, т. е. развитие событий во времени.

Рис. 4.9. Примерная схема–вариант аварийного охлаждения зоны ядерной
энергетической установки

Рассмотрим пример. Допустим, что ядерная энергетическая установка (ЯЭУ) включает первый контур (рис. 4.9), состоящий из реактора 1, парогенератора 2, главного циркуляционного насоса (ГЦН) 3 и главных циркуляционных трубопроводов 4, заполненных теплоносителем –водой (в процессе работы реактора вода получает высокую наведенную радиоактивность). В парогенераторе вода охлаждается и, отдав теплоту теплоносителю второго контура, возвращается ГЦН в реактор для охлаждения твэлов. Перегрев оболочек твэлов и их разрушение можно рассматривать как катастрофу. Поэтому все ЯЭУ снабжены системами аварийного охлаждения активной зоны реактора –САОЗ, которые обеспечивают отвод теплоты из активной зоны в случае разгерметизации циркуляционного контура и потери теплоносителя САОЗ включает насосы низкого (ННД) 17и 18 высокого (НВД) 9 и 10давления, гидроаккумулятор (ГА) 23, в котором вода находится под давлением азота 24, и баки запаса воды и раствора борной кислоты 13 и 16. Условно примем следующий порядок работы САОЗ при большой разгерметизации циркуляционного контура сначала работает САОЗ высокого давления (ВД), состоящая из НВД и необходимой арматуры, затем работает САОЗ низкого давления (НД) – ГА и ННД В процессе эксплуатации ЯЭУ при возникновении «малых» течей допускается временная работа без аварийной остановки, при этом происходит автоматическая компенсация теплоносителя (работают компенсаторы, барботер) или принимаются другие срочные меры к локализации течи и устранению загрязнений помещения радиоактивностью.

Таблица 4.7. Перечень компонентов САОЗ ЯЭУ

Номер компонента и индекса Компонент Наименование отказа Х\
САОЗ ВД
Задвижка Закрыта
6 Обратный клапан Закрыт
7 Задвижка Закрыта
8 Задвижка Закрыта
9 Насос высокого давления Не работает
10 Насос высокого давления Не работает
11 Задвижка Закрыта
12 Задвижка Закрыта
13 Емкость Нет воды
14 Задвижка Закрыта
САОЗ НД
24 Азот гидроаккумулятора Нет давления
23 Емкость гидроаккумулятора Нет воды
22 Обратный клапан Закрыт
21 Обратный клапан Закрыт
20 Обратный клапан Закрыт
19 Задвижка Закрыта
18 Насос низкого давления с запорной арматурой Не работает
17 Насос низкого давления с запорной арматурой Не работает
16 Емкость Нет воды
15 Задвижка Закрыта

Задаем потенциально возможное чепе, ведущее к катастрофе –отказ САОЗ. Находим все компоненты системы, которые могут привести к отказу САОЗ. Перечень компонентов Xi, дан в табл. 4.7. Используя материал §4.1, устанавливаем логические связи и строим дерево причин (рис. 4.10). Общая формула чепе «отказ САОЗ» имеет вид:

В этом выражении Хi одновременно являются наименованиями отказов и их индикаторами, которые принимают значение: 1 –чепе произошло и 0–отсутствие чепе.

Дерево причин показывает, что критическими компонентами являются 5, 6, 13, 14, 15, 16, 19,20, 21, 22, 23, 24, так как отказ одного из них достаточен для того, чтобы вызвать катастрофу.

После завершения АОДП можно от качественных характеристик приступить к количественному анализу.

Во многих случаях представление о состоянии системы, альтернативных путях протекания и результатах какого-либо процесса можно создать с помощью более простого графа. Рассмотрим его построение на примере трех параллельно работающих компонентов А 1, А 2, и А 3 (рис. 4.11). Исходным пунктом является кружок, который представляет в общем виде рассматриваемое состояние. Из этого узла ветви ведут к узлам, представляющим состояние первого компонента (в соответствии с заданными вероятностями), и таким же образом дальше от каждого из этих узлов к следующим, в которых указаны состояния второго и третьего компонентов, пока на выходе не получаются все возможные комбинации событий. В результате получается дерево событий, в котором каждый путь от исходной точки до конечного узла описывает одну из эволюции системы. В прямоугольниках справа от конечных узлов на рис. 4.11 еще раз указан результат события, соответствующий пути к этому конечному узлу. В рассматриваемом примере с тремя параллельно работающими компонентами в прямоугольниках указаны результирующие вероятности для состояния системы, которые при независимости выхода из строя отдельных компонентов получаются простым перемножением отдельных вероятностей (вероятность чепе в рассматриваемый отрезок времени принята одинаковой для каждого из трех компонентов: q i = 10 -3 ; i== 1, 2, 3).

Анализ опасностей с помощью дерева последствий потенциального чепе (АОДПО) отличается от АОДП тем, что в случае АОДПО задается потенциальное чепе –инициатор, и исследуют всю группу событий – последствий, к которым оно может привести. Таким образом, между событиями имеется временная зависимость. АОДПО можно проводить на любом объекте. Как и АОДП он требует хорошее знание объекта. Поэтому перед тем, как проводить АОДПО, необходимо тщательно изучить объект, вспомогательное оборудование, параметры окружающей среды, организационные вопросы.

Рис. 4.10. Дерево причин потенциального чепе–отказа САОЗ ЯЭУ

Рис. 4.11. Дерево событий при аварии трех параллельно работающих компонентов

Воспользуемся предыдущим примером с ЯЭУ. Зададим потенциальное чепе «Снижение расхода теплоносителя в первом контуре». Дерево последствий (рассматривались только подсистемы) представлено на рис. 4.12. В число последствий входят: рабочая утечка, штатная работа САОЗ и чепе-авария. Далее можно переходить к количественному анализу (§ 4.3). Для построения дерева последствий можно использовать символы, представленные в табл. 4.8.

Анализ опасностей методом потенциальных отклонений (АОМПО): отклонение –режим функционирования какого-либо объекта, системы, процесса или какой-либо их части (компонента), отличающийся в той или иной мере от конструкторского предназначения (замысла).

Метод потенциальных отклонений (МПО) – процедура искусственного создания отклонений с помощью ключевых слов. Этим методом анализируют опасности герметичных процессов и систем. Наибольшее распространение он получил в химической промышленности. АОМПО обычно предшествует ПАО.

После того, как с помощью ПАО были установлены источники опасностей (системы, чепе), необходимо выявить те отклонения, которые могут привести к этим чепе. Для этого разбивают технологический процесс или герметичную систему на составные части и, создавая с помощью ключевых слов (табл. 4.9) отклонения, систематично изучают их потенциальные причины и те последствия, к которым они могут привести на практике. Для проведения анализа необходимо иметь: проектную документацию на стадии проектирования; алгоритм анализа, который позволяет исследовать один за другим все компоненты (например, рис. 4.13); набор ключевых слов (табл.4.9), с помощью которых выявляют ненормальный режим работы компонента.

Рассмотрим герметичный объект, в котором химические вещества А и В вступают в реакцию, чтобы образовать продукт С (рис 4.14). Допустим, что потенциальным чепе является взрыв, происходящий тогда, когда концентрация C А вещества А превысит концентрацию c b вещества В в емкости 1. Следуя пункту 3 (см. рис. 4.13), выбираем для рассмотрения трубопровод 2–1. Его предназначение –транспортировать вещество В из сосуда 2 в сосуд 1. Используя первое ключевое слово в первой строке табл. 4.9, создаем отклонение: трубопровод НЕ транспортирует вещество В из сосуда 2 в сосуд 1. Нет подачи вещества В в емкость 1. Используя чертеж-схему движения веществ, устанавливаем потенциальные причины этого события: в питающем резервуаре 2 не осталось вещества В, отказал насос 3 подачи вещества В [а) испортилась электрическая часть; б) испортилась механическая часть; в) кто-то выключил насос и т д.; произошла разгерметизация трубопровода; вещество В не проходит через вентиль 4.

Читайте также:  Продукты с большим содержанием витаминов таблица

Последствие отклонения: через некоторое время после прекращения подачи вещества В концентрация C Д превысит C В и произойдет взрыв.

Таким образом, на стадии проектирования на участке 2–1 вскрыты опасности. Предстоит разработка предупредительных мероприятий, например, аварийной сигнализации, оповещающей о прекращении подачи вещества В в емкость 1 и правил безопасной эксплуатации рассмотренного участка.

Был получен результат во время применения первого ключевого слова. Тем не менее к участку 2–1 должны быть последовательно применены все последующие ключевые слова Только после окончания такой процедуры выявления опасностей можно переходить к следующему участку.

Таблица 4.8. Символы, используемые при построении дерева последствий

Анализ ошибок персонала (АОП) включает следующие этапы: выбор системы и вида работы; определение цели; идентификацию вида потенциальной ошибки; идентификацию последствий; идентификацию возможности исправления ошибки; идентификацию причины ошибки; выбор метода предотвращения ошибки; оценку вероятности ошибки; оценку вероятности исправления ошибки; расчет риска; выбор путей снижения риска.

Источник

Качественный анализ опасностей

Вы будете перенаправлены на Автор24

Предварительный анализ опасностей

Предварительное исследование опасностей является началом качественного анализа опасностей и дает возможность источники опасностей идентифицировать. Говоря другими словами, это анализ общих групп опасностей, которые могут иметь место в системе, их развитие и рекомендации в отношении контроля. Это попытка определить и классифицировать опасности.

Порядок их выполнения:

  1. Тщательное изучение системы и технических характеристик объекта, источников его энергии и материалов, а также рабочей среды;
  2. Определение опасных и вредных их свойств;
  3. Выявляют все правила, стандарты и законы, распространяющиеся на данный объект;
  4. Проверка соответствия нормам безопасности всей технической документации;
  5. Составление перечня опасностей.

В списке опасностей отмечаются идентифицированные источники опасностей, отмечают потенциально опасные ситуации и выявленные недостатки. В результате установления главных систем объекта, являющихся источниками опасности, начинается более детальное их рассмотрение и исследование. Особое внимание при проведении предварительного анализа опасностей уделяют тем компонентам объекта, в которых могут быть взрывоопасные и токсичные вещества, потенциальным чепе от реакций, которые не контролируются. Здесь прибегают к помощи уже других методов анализа. Сами методы и приемы , использующиеся при их выполнении, имеют разные названия.

Помощь со студенческой работой на тему
Качественный анализ опасностей

Основные типы анализа:

  1. ПАО – предыдущий анализ опасностей;
  2. САО – системный анализ опасностей;
  3. ПСАО – подсистемный анализ опасностей;
  4. АОРО – анализ опасности работ и обслуживания.
  5. Для проведения анализа используются такие методы и приёмы:
  6. АПВЭ – анализ повреждений и эффекта ими вызванного;
  7. АДО – анализ древа ошибок;
  8. АРО – анализ риска ошибок;
  9. РМДР – расчет менеджмента и древа риска;
  10. АППЭ – анализ потоков и препятствий энергии;
  11. АПП – анализ поэтапного приближения;
  12. ПАО – программный анализ опасностей;
  13. АОПП – анализ общих причин поломки;
  14. ПСА – причинно-следственный анализ;
  15. АДС – анализ древа событий.

Методы качественного анализа опасностей

Цель качественного анализа опасностей:

  1. Идентификация источников опасностей и их главных характеристик;
  2. Выявление повреждающих факторов, которые возникают при действии опасности;
  3. Предпосылки причин, приводящих к развитию нежелательного процесса и их последовательность;
  4. Оценка нежелательных последствий.

В ходе качественного анализа опасностей используются следующие методы.

Все они предполагают анализы:

  1. Предварительный;
  2. Последствий отказов;
  3. Дерева последствий;
  4. Потенциальных отклонений;
  5. Возможных ошибок персонала;
  6. Причинно-следственный анализ.

О том, что предварительный анализ опасностей является началом качественного анализа, мы уже говорили в первой главе. Поэтому ниже остановимся на других его видах и рассмотрим анализ последствий отказов. Этот анализ имеет системный подход и носит характер прогноза. Оценить опасный потенциал при помощи анализа последствий отказов можно для любого технического объекта.

Осуществляют АПО в таком порядке:

  1. Объект, которым является та или иная техническая система подразделяют на компоненты;
  2. Выявляют возможные отказы для каждого компонента;
  3. Потенциальные ЧП на исследуемых объектах тщательно изучаются;
  4. Все данные записываются в форме таблицы;
  5. Выявленные отказы ранжируют по опасностям и, соответственно, меры предупреждения.

С помощью АПО выявляется возможность и необходимость применения других методов идентификации опасностей. В ходе этого анализа собирается и документально оформляется информация о частоте отказов. Опасности анализируют и с помощью дерева причин потенциальных ЧП, который имеет следующий порядок:

  1. Производят выбор потенциальных ЧП;
  2. Факторы, ведущие к заданным ЧП, выявляются;
  3. Ориентировочные графики являются результатом анализа, корень которых, т.е. вершина графа, занумерована потенциальным ЧП.

Причины и события, в результате которых возможно заданное ЧП, должны быть составными частями дерева.

Опасности, анализируемые с помощью дерева последствий потенциальных ЧП. Основное отличие от дерева причин заключается в том, что в последнем задается потенциальное ЧП-инициатор. Происходит исследование всей группы событий-последствий, которые могут возникнуть. Использование этого метода предполагает хорошее знание объекта и всех его составляющих. Очень важно знать не только основное, но и вспомогательное оборудование, параметры окружающей среды, организационные вопросы.

Метод потенциальных отклонений при анализе опасностей.

Отклонение в данном случае, это работа какого-либо объекта или его компонента, отличающаяся от конструкторского предназначения.

Метод МПО – использует ключевые слова, с помощью которых создаётся искусственное отклонение. Метод позволяет анализировать опасности, широко распространенные в химической промышленности – это герметичные процессы и системы. После установления источников опасностей, выявляются отклонения, способные привести к этим ЧП. С этой целью технологический процесс разбивают на составные части и с помощью ключевых слов создают отклонения. Далее идет изучение их потенциальных причин и последствий, к которым они могут привести на практике.

Чтобы провести анализ необходимо иметь:

  1. Документацию на стадии проектирования;
  2. Последовательность анализа, позволяющего исследовать все компоненты;
  3. Ключевые слова, позволяющие выявить ненормальный режим работы компонента.

Метод анализа ошибок персонала имеет свои этапы:

  1. Выбирается система и вид работы;
  2. Определяется цель;
  3. Идентифицируется вид потенциальной ошибки и последствий;
  4. Выбирается идентификация возможности исправления ошибки;
  5. Идентифицируются причины ошибки;
  6. Выбирается метод предотвращения ошибки;
  7. Выбирается оценка вероятности ошибки и оценка вероятности её исправления;
  8. Рассчитывается риск;
  9. Выбирается путь снижения риска.

После выбора величины напряжения, которая измеряет последствия ошибки, и, установив шкалу для измерений, можно рассчитать значения рисков: R=Pоп (1- Pис) xU, где Pоп и Pис – возможные ошибки и вероятность их исправления. Ошибки персонала могут привести к пожарам, взрывам, механическим повреждениям, выбросам токсичных веществ. Ошибки, которые может допустить оператор, зависят от тех условий, которые организованы на рабочем месте и, безусловно, от стажа его работы. Однако надо сказать, что большой стаж работы не является преградой для их совершения.

Являясь составной частью общего анализа опасностей, причинно-следственный анализ, выявляет причины происшедшего ЧП. Завершается он прогнозом новых ЧП и составлением плана мероприятий по их предупреждению.

Анализ опасностей при помощи дерева причин потенциального ЧП (АОДП)

Алгоритм этого анализа выполняется в следующем порядке:

  1. Выбор потенциального ЧП;
  2. Выявление всех факторов, ведущих к данному ЧП;
  3. Результат анализа – построение ориентированного графа.

Вершина графа занумерована потенциальным ЧП, поэтому граф является деревом. Дерево в данном случае имеет все те причины-события, которые могут привести к заданному ЧП. Возможным проведение этого анализа делает тщательное изучение рабочих функций всех компонентов технической системы. Кроме этого на работу системы большое влияние оказывает человеческий фактор, допустим, ошибка оператора. Исходя из этого все потенциальные инциденты – «отказы операторов» – вводить в содержание дерева причин. Отражаемые деревом события носят статический характер.

Рассмотрим ядерную энергетическую установку (ЯЭУ) в качестве примера.

Первый контур этой установки включает:

  1. Реактор;
  2. Парогенератор;
  3. Главный циркулирующий насос (ГЦН);
  4. Главные циркуляционные трубопроводы, заполненные водой.

Вода в процессе работы реактора получает высокую наведенную радиоактивность, а в парогенераторе происходит её охлаждение.

Отдав теплоту теплоносителю второго контура, она через ГЦН возвращается в реактор для охлаждения твэлов.

Разрушение и перегрев оболочек твэлов можно рассматривать как катастрофу, поэтому все ядерные энергетические установки имеют системы аварийного охлаждения активной зоны реактора (САОЗ).

Система аварийного охлаждения обеспечивает отвод теплоты из активной зоны. Отвод требуется, если произошла разгерметизация циркуляционного контура и потеря теплоносителя. В этом случае САОЗ включает насосы низкого (ННД) и высокого давления (НВД), гидроаккумулятор (ГА), где вода находится под давлением азота, а также баки запаса воды и раствора борной кислоты.

Если условно принять порядок работы САОЗ при большой разгерметизации циркуляционного контура, то сначала работает САОЗ высокого давления (ВД). Состоит она из НВД и необходимой арматуры.

Затем работает САОЗ низкого давления (НД) – ГА и ННД. При возникновении «малых» течей в ходе работы ЯЭУ, допускается временная работа без аварийной остановки. Происходит автоматическая компенсация теплоносителя или принимаются другие срочные меры к локализации течи и ликвидации в помещениях радиоактивной загрязненности.

Качественный анализ опасностей дает возможность выявить источники повышенной опасности, определить опасности маловероятные и практически неосуществимые опасности.

Источник

Adblock
detector