Меню

Как вакцины от COVID 19 заставляют работать иммунитет интервью заместителя управляющего НИЦ Эко безопасность



Специфический иммунный ответ

Специфический иммунный ответ (приобретенный иммунитет) – это второй этап защитной реакции организма. Его отличительной особенностью является распознавание чужеродного антигена и выработка факторов защиты, направленных специально против него. В реализации специфического иммунного ответа можно выделить три этапа:

  • распознавание антигена;
  • активацию лимфоцитов;
  • эффекторное действие.

В основе специфического иммунного ответа лежит накопление антител и специализированных Т-клеток, которые связывают антиген, нейтрализуют его и в конечном итоге защищают организм от чужеродных антигенов.

Специфический иммунный ответ может быть двух видов: гуморальный и клеточный. Упрощенная схема иммунного ответа представлена на рис. 14.

Рис. 15. Схема иммунного ответа

Гуморальный иммунитет. Эффекторные функции гуморального иммунитета обусловлены действием антител.

В-лимфоциты несут на своей поверхности мембраносвязанные антитела класса IgM, выполняющие функции антигенраспознающих рецепторов. Клетки каждого клона В-лимфоцитов несут рецепторы, специфичные к определенному антигену. Чтобы обеспечить связывание многочисленных антигенов, с которыми в течение жизни может столкнуться организм, изначально в нем должно существовать практически бесконечное разнообразие рецепторов разной специфичности. Исходное число клеток каждой специфичности до встречи с антигеном невелико. Когда антиген проникает в организм, он связывается с В-клетками, несущими рецепторы, специфичные к этому антигену, что является сигналом к началу интенсивного размножения (пролиферации) В-лимфоцитов. После определенного числа делений В-клетки дифференцируются в плазматические клетки, которые образуют и выделяют в растворимом виде в кровь антитела, специфические к данному антигену.

Продукция антител может протекать без участия Т-клеток, если антигенами являются молекулы биополимеров с повторяющимися эпитопами, например белковые и липополисахаридные антигены бактерий, вирусов. Структура этих антигенов позволяет им перекрестно связывать В-клеточные рецепторы, что приводит к дальнейшей активации, пролиферации и дифференцировке В-лимфоцитов. Развивающийся при этом иммунный ответ идет по IgM-типу. Переключение на синтез иммуноглобулинов других типов в отсутствие кооперации с Т-клетками либо невозможно, либо длится непродолжительное время.

Если антиген имеет мономерное или олигомерное строение, он не способен перекрестно связывать В-клеточные рецепторы, поэтому для активации В-лимфоцитов необходим дополнительный сигнал от Т-клеток. Т-лимфоциты распознают антиген только в комплексе с белками МНС. Поэтому после связывания антигена с рецептором происходит его фагоцитоз В-лимфоцитом и вынос антигенной детерминанты в комплексе с белками МНС-II на поверхность клетки. Связывание Тх, имеющего на своей поверхности рецептор, специфичный по отношению к данному антигену, стимулирует выработку в Тх-клетках медиаторов иммунного ответа – интерлейкинов. IL-2, воздействуя на В-лимфоцит, активируют процесс размножения и преобразования в плазматическую клетку.

Эффекторные функции антител. Антитела могут взаимодействовать с бактериальными токсинами, находящимися в крови. Токсины — это продукты жизнедеятельности бактерий, обладающие токсичностью по отношению к организму человека, например, столбнячный, гангренозный, дифтерийный. Связывание токсинов с антителами приводит к подавлению их токсичности, но не приостанавливает размножение бактерий.

Антитела могут взаимодействовать с вирусами, находящимися в крови, блокируя их антигены. Это препятствует связыванию вируса с рецепторами клетки и проникновению в нее.

Комплекс антиген-антитело (малый иммунный комплекс) активирует систему комплемента.

Клеточный иммунитет включает формирование клонов Т-лимфоцитов, способных разрушать клетки собственного организма, зараженные вирусом (противовирусный иммунитет), раковые клетки (противоопухолевый иммунитет), отторгать пересаженные органы и ткани (трансплантационный иммунитет), а также участвует в ликвидации некоторых видов бактериальных инфекций.

В первой фазе иммунного ответа, проникший в организм вирус захватывается антигенпрезентирующими клетками (АПК), частично расщепляется и его антигенная детерминанта выносится на поверхность клетки в комплексе с белками МНС-II для распознавания Тх-лимфоцитами или с молекулами МНС-I, распознаваемом Тк-лимфоцитами. Среди огромного количества Тх-клеток только немногие обладают подходящим Т-клеточным рецептором и могут специфически распознать линейный Т-эпитоп в комплексе с молекулой МНС II. Процесс распознавания активирует АПК, которые начинают секретировать сигнальные белки интерлейкины (IL-1), стимулирующие пролиферацию этих Тх-клеток. Активированные Тх-клетки продуцируют IL-2, стимулирующий их собственное деление.

Во второй фазе Тх-иммунного ответа активированные Тх-клетки распознают на поверхности В-клеток тот же комплекс: молекула МНС класса II – антигенный пептид, который присутствует на АПК.

Цитотоксические Т-лимфоциты (Тк) распознают процессированный вирусный антиген, представленный в комплексе с МНС-молекулами I класса. Клонированные и активированные Тц-лимфоциты способны узнавать и связывать инфицированные клетки организма, на поверхности которых есть вирусные фрагменты, связанные с МНС-молекулами I класса. Тц-клетки секретируют белок перфорин, который образует каналы в наружной мембране инфицированных клеток, что приводит к ее лизису.

После устранения инфекции сохраняется некоторая часть вновь cинтезированных В-, Тх- и Тц-лимфоцитов, способных снова активироваться, если вирус повторно попадет в организм.. Их называют клетки памяти, они являются наиболее долгоживущими клетками и обеспечивают долгосрочный иммунитет.

Таким образом, основными характеристиками специфического иммунитета являются специфичность и память.

Источник

Как вакцины от COVID-19 заставляют работать иммунитет — интервью заместителя управляющего НИЦ «Эко-безопасность»

Как вакцины от COVID-19 заставляют работать иммунитет - интервью заместителя управляющего НИЦ

Такой разный иммунитет

Смысл любой вакцинации – так или иначе воздействовать на иммунную систему. Изначально понятие «иммунитет» подразумевало только способность организма противостоять внешним инородным агентам: бактериям, вирусам, простейшим. Потом оно стало шире. В современном понимании – это сложная, многогранная система, которая направлена в том числе на поддержание внутренней целостности и слаженной работы организма. В свое время Илья Мечников и Пауль Эрлих получили Нобелевскую премию за открытие иммунитета. Мечников разработал теорию клеточного иммунитета, Эрлих — гуморального. На момент своих разработок ученые друг друга критиковали, но в итоге жизнь показала, что они оба были правы. На сегодня две их теории не исключают, а дополняют друг друга. За клеточный иммунитет отвечают так называемые Т-клетки, которые поглощают чужеродные микроорганизмы, а также презентируют их — они носят на себе их фрагменты и показывают другим клеткам, после чего запускается выработка антител — специальных белковых комплексов в крови (иммуноглобулины IgА, IgМ, IgG), которые нейтрализуют и поглощают чужеродные микроорганизмы. Антитела отвечают за гуморальный иммунитет.

Любое вещество, которое организм человека воспринимает как чужеродное и потенциально опасное для себя, называется антигеном. Новый коронавирус SARS-CoV-2 относится к РНК-содержащим вирусам, и антигеном может быть как внутренняя его часть (нуклеиновые кислоты), так и внешняя (поверхностная оболочка, которая представлена сложными полипептидами – белками).

Помимо того, что иммунитет бывает клеточным и гуморальным, он подразделяется еще на естественный или искусственный.

Естественный иммунитет, в свою очередь, бывает врожденным (как выяснилось, у человека нет врожденного, генетически обусловленного иммунитета к новой коронавирусной инфекции) или приобретенным (он формируется после перенесенной болезни, в некоторых случаях даже на всю жизнь, как после ветрянки).

Искусственный иммунитет бывает активным и пассивным. Если человек уже болеет, у него вырабатываются антитела, но их недостаточно для выздоровления, тогда речь идет о необходимости пассивного иммунитета. Это не что иное, как переливание плазмы крови уже переболевших. Так происходит, например, при заражении клещевым энцефалитом: человеку в течение 72 часов вводят специальные противоклещевые иммуноглобулины. Вакцинация помогает создать активный искусственный иммунитет. Мы вводим человеку вакцину, в которой есть антигены, — на них организм начинает формировать иммунный ответ, но при этом они не вызывают заболевания.

В зависимости от использованных антигенов и принципа создания вакцины делятся на несколько видов. Расскажу об основных из них.

Векторные рекомбинантные вакцины. «Спутник V», «Конвидеция»

Векторные вакцины — результат работы генетиков. Суть в том, что из генома целевого вируса вычленяют необходимый ген (кусочек ДНК или РНК), который кодирует синтез белка, отвечающего за проникновение вируса в клетку человека. Если заблокировать этот белок, то при попадании в организм вирус не сможет пробраться внутрь клетки и будет инактивирован. Поэтому главная задача этой технологии — найти нужный ген. Если с геном не угадать, то антитела после такой вакцинации начнут вырабатываться к другому белку, и вакцина окажется, увы, неэффективной. Найденный ген обычно встраивают в условно безопасный для человека биологический объект — так называемый вектор. Это может быть бактерия, дрожжевой гриб или другой вирус. Вирус-вектор проникает в клетку, а встроенный в него ген начинает синтезировать нужные белки. Организм же в ответ на враждебный белок начинает вырабатывать антитела. При этом белок, без полноценного вируса, не сможет навредить, не будет размножаться, продуцировать продукты своей жизнедеятельности — токсины и так далее. Зато потом, уже при встрече с «настоящим» вирусом, выработавшиеся антитела смогут обеспечить быструю защиту. Даже если человек заболеет, то не тяжело, а затраты организма на борьбу с инфекцией будут сведены к минимуму.

К плюсам векторных вакцин можно отнести высокую иммуногенность — при их введении формируется достаточно высокий титр защитных антител. По сути, это самые современные технологии создания вакцин — генная инженерия в чистом виде. Но как раз в ее новизне кроется и минус — они применялись на небольшом проценте популяции и еще мало изучены. Мы пока не можем говорить о долгоиграющих перспективах — сформируется ли пожизненный иммунитет? Или что будет, если вирус мутирует и ген, который использовали в создании вакцины, «в природе» немного изменит свою кодировку — состыкуется ли с ним антительный ответ после вакцинации? Кроме того, при введении такой вакцины организм может также отреагировать на вирус-вектор, что помешает главной цели – формированию стойкого иммунитета против целевого вируса. Именно поэтому для вектора важно выбрать оптимальный вариант — тот, на который реакция организма будет минимальной.

К векторным относится первая российская вакцина против коронавируса «Спутник V», разработанная НИЦ эпидемиологии и микробиологии им. Гамалеи. Разработчики «Спутник V» встроили ген, кодирующий информацию о структуре S-белка шипа коронавируса — он формирует всем известную «корону» и отвечает за связывание вируса с клетками человека. В качестве вектора они использовали давно и хорошо изученный аденовирус, который вызывает сезонную ОРВИ. Над векторными вакцинами трудятся и другие разработчики. В частности, регистрируемая китайская вакцина «Конвидеция» тоже векторная и тоже на основе аденовируса. Заявку на ее регистрацию подала биофармацевтическая компания «Петровакс» (входит в холдинг «Интеррос» Владимира Потанина). Сейчас она проходит 3-ю фазу клинического исследования, в которой только наш центр задействует 300 добровольцев из Петербурга.

До «Спутника V» в России в широкой клинической практике векторные вакцины не применялись. В 2015 году была зарегистрирована подобная вакцина против лихорадки Эбола, разработанная тем же Центром им. Гамалеи. Векторная вакцина против другой разновидности коронавируса – ближневосточного респираторного синдрома (MERS) – еще одна разработка Центра им. Гамалеи с использованием вектора на основе аденовируса, но она пока не зарегистрирована.

Есть еще одна разновидность генно-инженерных вакцин последнего поколения — на основе нуклеиновых кислот (ДНК- и РНК-вакцины). В них также используются модификации генетического материала, но, в отличие от векторных вакцин, этот материал синтезируют искусственно. Иначе говоря, собирают необходимую нуклеиновую последовательность в лаборатории и с ней работают. Это технология завтрашнего дня — пока в России нет ни одной такой вакцины, испытанной на людях.

Читайте также:  Пример использования формул массивов для выборочного суммирования

Цельновирионные вакцины

На цельновирионных вакцинах человечество выросло — это классика. Для создания таких вакцин вирус используется целиком, а не какая-то его часть. Они бывают живыми ослабленными или инактивированными (в них вирус «убит» термически либо воздействием химических агентов, например, с помощью формалина или ацетона).

Технология цельновирионных вакцин максимально приближена к естественному механизму формирования иммунитета. При их введении антительный ответ формируется на все части вируса, включая оболочку, генетический материал и даже возможные продукты его жизнедеятельности. Из минусов — необходимость использовать дополнительные вещества, так называемые адъюванты. Они усиливают иммунный ответ, но вместе с тем могут вызвать аллергическую реакцию — это дополнительная нагрузка на организм. Небольшое повышение температуры тела или покраснение в месте инъекции — типичные поствакцинальные реакции, и они могут быть вызваны не столько инактивированным вирусом, сколько адъювантами. Считается, что чем меньше «ингредиентов» в вакцине, тем лучше.

Для приготовления инактивированных вакцин используется большой спектр возбудителей — бактерий и вирусов. Такие вакцины защищают нас от бешенства (антирабическая), коклюша, гепатита А, гриппа, клещевого энцефалита, брюшного тифа.

Цельновирионную инактивированную вакцину против коронавируса, к примеру, разработал Научный центр им. Чумакова (по словам президента Путина, она уже «на подходе»). Сейчас она проходит стадию клинического исследования. 19 октября на базе научно-исследовательского центра «Эко-безопасность» стартовал второй этап — в нем участвуют 30 добровольцев. Чтобы «подхлестнуть» иммунитет и повысить уровень антител, вакцину вводят двукратно – с разницей в 10 дней. Кстати, дважды вводят и «Спутник V».

Для цельновирионных вакцин с живым, но ослабленным вирусом обычно достаточно одного введения. В них вирус сохраняет возможность размножаться в организме человека. Такие препараты нуждаются в регулярном изучении генетической стабильности, чтобы не вызвать заболевания при иммунизации. Бывают, к примеру, живые вакцины против кори, полиомиелита, гриппа, но их сейчас практически не применяют.

Субъединичные вакцины. «ЭпиВакКорона»

Такие препараты создаются на основе различных антигенных компонентов – субъединиц. Можно взять, к примеру, часть оболочки вируса — белки, которые отвечают за проникновение вируса в клетку. У коронавируса это S-белок. И хотя антитела при введении такой вакцины будут вырабатываться непосредственно на белок, уровень иммунного ответа и качество защитных антител, скорее всего, будет ниже, чем на векторную или цельновирионную вакцины. На целый вирус или кусочек генома вырабатываются более сложные по структуре антитела, чем на изолированный белок. Но надо понимать, что, говоря «белок», мы немного утрируем — там может использоваться много структур, включая поверхностную и внутреннюю мембрану, белки-носители и так далее.

В чем минусы таких вакцин? Поверхностный белок может со временем мутировать, и будет ли вакцина эффективна, скажем, через год — вопрос. Для усиления иммунного ответа в них так же, как и в цельвирионных, используются адъюванты. Плюс же в том, что субъединичные вакцины проще в производстве, чем, например, векторные.

К субъединичным относятся вакцины против пневмококковой и менингококковой инфекций, брюшного и сыпного тифа, холеры.

По этому типу создана вторая зарегистрированная вакцина против коронавируса «ЭпиВакКорона» от новосибирского центра «Вектор». Она представляет собой химически синтезированные пептидные (пептиды — семейство веществ, молекулы которых построены из двух и более остатков аминокислот) антигены S-белка вируса SARS-CoV-2.

Вакцины на основе вирусоподобных частиц

Для производства этих вакцин берут пустую белковую оболочку вируса – без «нутра». Вирусоподобные частицы имитируют структуру вируса, но не содержат его генетического материала. В их состав также могут входить адъюванты и иммуностимуляторы.

Из плюсов. Они безопасны и способны вырабатывать высокий иммунный ответ, при этом эффективны даже в виде капель для носа – так они сразу активируют иммунитет слизистых оболочек, которые обычно становятся «входными воротами» для вирусов. В то же время такие вакцины технологически сложны для массового производства и требуют больших финансовых вложений. Опять же, даже при незначительной мутации вируса поверхностный белок может поменять свою конфигурацию, и тогда вакцина попросту может не сработать.

На сегодня такие вакцины созданы для профилактики гриппа, гепатита С.

Источник

7.2. Иммунный ответ

Иммунный ответ — это процесс взаимодействия клеток иммунной системы, который индуцируется антигеном и приводит к образованию эффекторных клеток и молекул, уничтожающих данный антиген.

Иммунный ответ является всегда специфическим, но не изолированным процессом, который протекает только в периферических органах иммунной системы. Как правило, он сопровождается такими неспецифическими реакциями, как фагоцитоз, активация комплемента, NK-клеток и т.д.

7.2.1. Стадии иммунного ответа

В начальных стадиях иммунного ответа участвуют, по крайней мере, три вида клеток: макрофаг (или дендритная клетка), Т- и В-лимфоцит. В целом все клетки, вовлеченные в этот процесс,

могут быть разделены, как указывалось выше, на антигенпредставляющие, регуляторные, эффекторные и клетки памяти. Имеются 2 магистральных пути иммунного ответа:

1. Клеточный иммунный ответ (T-клеточный).

2. Гуморальный иммунный ответ (в-клеточный).

Первый из них регулируется Т-хелперами типа 1 (Th1) и приводит к формированию эффекторных CD4+ T-клеток воспаления и цитотоксических CD8+ T-лимфоцитов, а также соответствующих им Т-клеток памяти.

Второй путь регулируется Т-хелперами типа 2 (Th2) и заканчивается образованием плазматических клеток (продуцентов антител) и В-лимфоцитов памяти. Переключение на синтез некоторых изотипов антител частично контролируется Th1. За исключением скрытого индуктивного периода иммунный ответ в среднем продолжается около трех недель с максимальным напряжением на 1-й неделе.

Можно выделить несколько основных стадий иммунного ответа:

1. Эндоцитоз антигена, его процессинг (обработка) и загрузка на молекулы HLA I или HLA II для презентации лимфоцитам.

2. Распознавание комплекса антигенный пептид/HLA I или антигенный пептид/HLA II и других стимулов.

3. Сигнальная трансдукция и активация лимфоцитов.

4. Клональная экспансия (пролиферация) лимфоцитов.

5. Созревание эффекторных лимфоцитов и клеток памяти.

6. Эффекторная активность (деструкция антигена).

Первая стадия иммунного ответа (эндоцитоз, процессинг и презентация антигена). Антигенпредставляющая клетка (макрофаг, дендритная клетка или В-лимфоцит) сталкивается с нативным антигеном и поглощает его. Макрофаги фагоцитируют главным образом патогены, для которых характерно внутриклеточное паразитирование (вирусы, бактерии, грибы, простейшие и др.); дендритные клетки пиноцитируют вирусы; В-клетки интернализируют различные токсины.

Следующее событие, процессинг, представляет собой ферментативный катализ макромолекулы антигена внутри антигенпредставляющей клетки. В результате процессинга происходит высвобождение доминирующей антигенной детерминанты (иммуноактивного пептида или суперантигена), который загружается на желобки собственных молекул HLA I или HLA II и выводится на поверхность

клетки для представления лимфоцитам. В зависимости от происхождения антигена выделяют два пути процессинга.

Экзогенные антигены презентируются в комплексе с молекулами HLA II «наивным» CD4+ T-клеткам (путь, опосредуемый HLA II).

Огачала эти антигены поглощаются и фрагментируются с помощью протеолитических ферментов в эндосомах (лизосомах). В то же самое время молекулы HLA II, связанные с шаперонами (калнексином и инвариантной цепью Ii), синтезируются и собираются в эндоплазматическом ретикулуме. Ii-цепь необходима для защиты желобка молекулы HLA вплоть до того момента, пока не будет загружен антигенный пептид. Затем комплекс HLA II/Ii-цепь транспортируется через аппарат Гольджи в эндосомы, где Ii-цепь теряется, а роль по защите желобка начинают выполнять дополнительные молекулы HLA-DM и, вероятно, HLA-DO. Наконец, антигенный пептид загружается на желобок молекулы HLA II, и этот комплекс экспрессируется на поверхности клетки.

Эндогенные или внутриклеточно расположенные антигены микробного происхождения загружаются на молекулы HLA I (путь, опосредуемый HLA I) для представления «наивным» CD8+ T-клеткам. Сначала, в отличие от экзогенных антигенов, такие цитоплазматические антигены перемещаются в цитозоль, где они расщепляются в крупном протеолитическом комплексе — протеасоме. После этого антигенный пептид транспортируется через «туннель» молекул TAP-1/TAP-2 в эндоплазматический ретикулум. Одновременно здесь происходит сборка молекулы HLA I, желобок которой (по аналогии с Ii-цепью у HLA II) находится «под защитой» шаперонов (сначала калнексина, затем кальретикулина), а укладка всей молекулы HLA I в последующем стабилизируется дополнительными молекулами (тапазином и др.). После загрузки антигенного пептида на желобок HLA I этот комплекс транспортируется на поверхность клетки.

Небелковые антигены загружаются на не-HLA-антигенпредстав- ляющие молекулы CD1.

В целом макрофаги и В-клетки вовлечены, соответственно, в Т-клеточный или гуморальный иммунный ответ по пути, опосредованному HLA II, а дендритные клетки двух типов способны к перекрестной презентации. Дендритная клетка типа 1 осуществляет процессинг эндогенных антигенов по пути с HLA I для запуска Т-клеточного ответа, а дендритная клетка типа 2 процессирует экзогенные антигены по пути с HLA II и включает В-клеточный ответ.

Вторая стадия иммунного ответа (распознавание антигена) протекает в течение нескольких часов. Однако при нарушениях клеточной миграции и межклеточных взаимодействий она может быть более длительной. Возможно, это приводит к замедлению всего иммунного ответа на патоген. Клиническими проявлениями этой стадии являются повышение температуры тела, мышечная слабость, снижение аппетита и сонливость. По большей части они обусловлены системными эффектами цитокинов (см. ниже).

Для того чтобы мог стартовать специфический иммунный ответ на конкретный антиген, необходимо, чтобы Т- и В-лимфоциты соответствующего клона встретились с антигенпредставляющей клеткой. Некоторые антигены бактерий (T-независимые антигены) распознаются с помощью BCR B-клеток и не требуют помощи со стороны Т-хелперов. Большинство нативных антигенов (так называемых T-зависимых антигенов) полностью распознаются «наивными» CD4+ Th1 и CD8+ T-клетками (для включения Т-клеточного ответа или пути Th1), а также «нaивными» CD4+ Th2 (для включения гуморального ответа или пути Th2). Интересно, что для прайминга CD8+ Т-клеток необходимо участие CD4+ Th1.

Третья стадия (сигнальная трансдукция и активация лимфоцитов). Во время распознавания лимфоциты воспринимают три типа обязательных сигналов, один специфический и два неспецифических:

1. Aнтигенный пептид/HLA I или антигенный пептид/HLA II.

3. Костимулирующие молекулы.

Антигенный пептид, загружаемый на HLA I или HLA II в результате процессинга, служит специфическим сигналом. Это одновременное «двойное» распознавание «своего» (белков HLA) и «несвоего» (антигена) было открыто нобелевскими лауреатами (1996) P.C. Doherty (Австралия, США) и R.M. Zinkernagel (Швейцария) и оказалось довольно универсальным явлением. Секретируемые цитокины и экспрессируемые костимулирующие молекулы являются двумя обязательными неспецифическими сигналами. Более того, для обеспечения надежного физического контакта клеток необходимо также взаимодействие таких адгезивных молекул, как LFA-1, ICAM-1, ICAM-2, ICAM-3.

Читайте также:  Для начала запомним несколько важных вещей

Цитокины играют одну из ключевых ролей в неспецифической регуляции иммунного ответа. Т- и В-лимфоциты получают цитокиновые сигналы от антигенпредставляющих клеток, NK-клеток,

тучных клеток и др. Обратный сигнал от лимфоцитов, например секретируемый IFN-γ, способствует реэкспрессии HLA I/HLA II на антигенпредставляющих клетках. Цитокины, действующие на ранних стадиях иммунного ответа, могут быть разделены на две группы в зависимости от его направления:

1. Th1-цитокины: IL-2, IL-12, IL-18, IFN-γ, TNF-α/β (для пути Т-хелперов типа 1).

2. Th2-цитокины: IL-4, IL-13 (для пути Т-хелперов типа 2). Однако на следующих стадиях иммунного ответа (клональная

экспансия, созревание эффекторов, переключение синтеза изотипов антител) в процесс вовлекаются другие цитокины.

Костимулирующие молекулы также играют важную роль в неспецифической регуляции иммунного ответа (табл. 7-2).

Таблица 7-2. Костимулирующие молекулы при иммунном ответе

Лиганды для CD28, CTLA-4

Активационный сигнал Ингибирующий сигнал

Ингибирующий сигнал Активационный сигнал

Активационный сигнал на переключение синтеза различных классов антител

Активация клеток является результатом сигнальной трансдукции, которая осуществляется серией сложных внутриклеточных реакций. После распознавания первоначально происходит активация связанных с корецепторами и молекулами CD3 (на Т-клетках) или CD79 (на В-клетках) тирозинкиназ нескольких семейств (Lck, Fyn, Blk, Btk, Lyn, Zap70, Syk и др.), затем через посредничество адаптерных белков включаются сигнальные пути. Один из них связан с активацией фосфолипазы Cγ, образованием инозитолтрифосфата и диацилглицерола, активацией протеинкиназы С и мобилизацией внутриклеточного Ca 2 +, с транскрипцией гена IL-2. Данный цитокин является ключевым ростовым фактором для лимфоцитов в иммунном ответе. Второй сигнальный путь связан

с обменом арахидоновой кислоты и приводит к транскрипции генов структурных белков, необходимых для осуществления митозов клеток.

Четвертая (клональная экспансия лимфоцитов) и пятая (созревание эффекторных лимфоцитов и клеток памяти) стадии иммунного ответа. Клональная экспансия представляет собой пролиферацию активированных лимфоцитов, которая протекает в периферических органах иммунной системы. Пролиферирующие В-лимфоциты образуют вторичные фолликулы в лимфатических узлах (центробластная стадия), при этом размножение клеток регулируется рядом цитокинов: IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-14, IFN-γ, TNF и др. В последующем центробласты начинают превращаться в центроциты, которые мигрируют на периферию фолликулов (центроцитарная стадия). В этот момент клетки вступают в период соматических гипермутаций, который является своеобразным способом селекции нужной специфичности BCR. Происходит позитивный отбор клеток с высокоспецифичным BCR и негативный отбор В-лимфоцитов с низкоспецифичным рецептором. В процессе созревания В-клетки претерпевают морфологические изменения (плазмобласт (иммунобласт) — проплазмоцит (лимфоплазмоидная клетка) — плазмоцит) и мигрируют в костный мозг и MALT для синтеза антител различных классов. Синтез ранних антител (IgM) регистрируется уже к концу первых суток клинического инфекционного эпизода, а высокоспецифических IgG — на 5-7 сутки.

Клональная экспансия и созревание Т-клеток протекают в паракортикальных зонах лимфатических узлов и периартериолярных пространствах селезенки. Распознавшие антиген клетки вступают в пролиферацию и превращаются в лимфобласты. Клоны CD8+ T-клеток нарастают быстро, а клоны CD4+ Т-лимфоцитов — более медленно. В целом, клональная экспансия и дифференцировка регулируются разными цитокинами (IL-2, IL-7, IL-9, IL-12, IL-15, IFN-γ, TNF и др.) и адгезивными молекулами. В процессе дифференцировки значительно изменяется фенотип Т-лимфоцитов, но, в отличие от В-лимфоцитов, они не меняются морфологически.

Характерным клиническим эквивалентом стадий клональной экспансии и дифференцировки является увеличение периферических лимфатических узлов, миндалин, видимых лимфатических фолликулов и селезенки. Можно наблюдать эти симптомы при респираторной, урогенитальной или значительной системной инфекциях.

В процессе иммунного ответа наряду с эффекторными клетками формируются Т- и В-клетки памяти. В отличие от эффекторных лимфоцитов с небольшими сроками жизни, клетки памяти остаются жизнеспособными в течение длительного времени (пожизненно). Существуют CD4+ и CD8+ T-клетки памяти, В-клетки памяти и долгоживущие плазматические клетки. В отличие от наивных Т-лимфоцитов Т-клетки памяти характеризуются фенотипом CD45RO+, CD44 hi , быстрым HLA-независимым циклом и способностью секретировать большие количества цитокинов. Долгоживущие плазматические клетки обеспечивают дополнительный механизм поддержания синтеза иммуноглобулинов без дополнительной антигенной стимуляции в течение 1,5 лет.

Вторичный иммунный ответ протекает в ускоренном режиме за счет клеток памяти (рис. 7-3). Появление IgM в сыворотке крови часто указывает на «свежую» инфекцию или реактивацию персистирующего патогена, а синтез IgG соответствует наличию иммунной памяти к однажды перенесенной инфекции. При таком ускоренном синтезе IgG клинические проявления инфекционной болезни обычно отсутствуют.

Рис. 7-3. Первичный и вторичный гуморальный ответ. В первом случае нарастание IgG отстает от нарастания IgM, при этом, поскольку IgM является низкоспецифичным по отношению к патогену, отмечаются все симптомы инфекционного заболевания (выделено серым). При вторичном ответе патоген связывается сразу высокоспецифичными антителами класса IgG, поэтому клинических проявлений болезни нет. По горизонтали — время (сутки); по вертикали — содержание иммуноглобулинов (г/л)

Шестая стадия иммунного ответа (эффекторная активность). Конечной стадией как гуморального, так и клеточного иммунного ответа является деструкция антигена, которая осуществляется с привлечением неспецифических факторов врожденного иммунитета. Известны следующие эффекторные механизмы деструкции антигена.

При иммунном ответе гуморального типа:

1. Простая нейтрализация антигена антителами при образовании иммунных комплексов «антиген + антитело» (АГ+АТ).

2. Комплементзависимый лизис антигена, связанного с антителом. Иммунные комплексы АГ+АТ, фиксированные на поверхности клеток-мишеней, присоединяют и активируют комплемент по классическому пути.

3. Фагоцитоз растворимых иммунных комплексов АГ+АТ с последующим их расщеплением в лизосомах фагоцитов.

4. Антителозависимая клеточная цитотоксичность (АЗКЦ). Реализуется путем разрушения клетками-киллерами (К-клетками) покрытых антителами (IgG) клеток-мишеней через присоединение к Fc-фрагменту IgG. Такими К-киллерами могут быть гранулоциты, макрофаги, тромбоциты, NK-клетки (натуральные киллеры).

При иммунном ответе клеточного типа:

1. Цитолиз и апоптоз клеток-мишеней. Цитотоксические Т-лимфоциты лизируют клетки-мишени с помощью белков — перфоринов. Перфорины — мономерные белки, способные встраивать в клеточную мембрану клетки-мишени и при полимеризации в присутствии Са 2 + образовывать в ней каналы (поры), повышая тем самым ее проницаемость для Na+ и воды. В результате клетка-мишень набухает, происходит разрыв ее мембраны и гибель (осмотический лизис). Наряду с этим через поры, образованные перфоринами, в клетку-мишень поступают секретируемые цитотоксическими лимфоцитами TNF-β (лимфотоксин) и гранзимы (сериновые протеазы), запускающие механизм естественной клеточной гибели (перфорин-гранзимовый путь апоптоза). При этом сами цитотоксические Т-лимфоциты за счет синтеза специфических эндогенных ингибиторов сериновых протеаз нечувствительны к воздействию гранзимов. Реализация цитотоксичности Т-лимфоцитов может быть связана также с синтезом IFN-γ (ингибирует репликацию вирусов, активирует экспрессию HLA I/II и процесс распознавания вирусов и вирусинфицированных клеток Т-лимфоцитами) и индукцией рецепторзависимого апоптоза. Его развитие обусловливается лиганд-

рецепторным взаимодействием между Fas-рецептором (CD95), экспрессируемым клеткой-мишенью, и Fas-лигандом (Fas-L) Т-киллера либо посредством секреции Т-киллером TNF-α, активирующего TNF-R-ассоциированный домен смерти (TRADD — TNF-R-associated death domain) при связывании со специфическим рецептором TNF-R1 на клетке-мишени. Кроме того, проапоптотическое действие цитотоксических лимфоцитов может быть опосредовано увеличением проницаемости митохондриальных мембран клеток-мишеней, снижением трансмембранного потенциала митохондрий и выходом в цитоплазму клеток различных апоптогенных факторов, например цитохрома С и апоптозиндуцирующего фактора (AIF — apoptosis induced factor), активирующих каспазы (цистеиновые протеазы). Процедура апоптоза включает фрагментацию ДНК, конденсацию хроматина, блеббинг (образование вздутий — пузырей) мембраны, сокращение клетки, ее дезорганизацию и упаковку в апоптотические тельца. На поверхности апоптотирующих клеток экспрессируются молекулы, распознаваемые фагоцитами (фосфосерин, тромбоспондин, десиалированные мембранные гликоконъюгаты). За счет этого апоптотические клетки и тельца подвергаются фагоцитозу и разрушению лизосомальными факторами фагоцитов.

2. CD4+ Т-лимфоциты, ответственные за гиперчувствительность замедленного типа, с помощью секретируемых цитокинов (прежде всего IFN-γ) инициируют миграцию макрофагов и нейтрофилов в очаг иммунного воспаления и их активацию в очаге. Активированные макрофаги и нейтрофилы разрушают клетки-мишени путем фагоцитоза.

Источник

Интервью с иммунологом: ответы на вопросы о вакцинации

Интервью с иммунологом: ответы на вопросы о вакцинации

Интервью с иммунологом: ответы на вопросы о вакцинации

Дорогие друзья, сегодня в нашей рубрике «Интервью с врачом» необычный гость. Наш директор, врач-генетик и к.м.н. Макеева Оксана Алексеевна побеседовала с Еленой Георгиевной Чуриной — д.м.н., профессором, врачом иммунологом-аллергологом. Тема — очень актуальная, будет посвящена вакцинации от новой коронавирусной инфекции.

О. А.: Елена Георгиевна, давайте сразу начнем с главного вопроса. Расскажите, пожалуйста, всех ли можно прививать, какие противопоказания, какие осложнения?

Е. Г.: Всех прививать, конечно, нельзя. Абсолютные противопоказания для вакцинации — беременность, аутоиммунные заболевания, онкологические заболевания, аллергические заболевания в стадии обострения, любые анафилактические реакции в анамнезе. Есть еще много относительных противопоказаний, в этом случае вопрос решается лечащим врачом пациента.

Вакцинация, которая сейчас активно предлагается и реализуется — в действительности продолжение третьей фазы испытаний — клинических исследований. Клинические исследования — это очень длительная и важная стадия и основными ее целями являются: получение объективных и полных данных о безопасности и эффективности вакцины, выявление побочных эффектов, в том числе отдаленных последствий, оценка соотношения риска и пользы при использовании изучаемой вакцины. И этот цикл обычно длится в течение 3-5 лет! Недавно появилась информация о тромбоэмболических осложнениях, в том числе развитии инсультов у людей после вакцинирования вакциной Astra Zeneca в ряде стран Европы. Напомню, что эта вакцина, по аналогии с вакциной Спутник V, также разработана на аденовирусной платформе.

Таким образом, вакцина Спутник V не прошла развернутую и полномасштабную третью фазу и поступила в гражданский оборот преждевременно, с ускоренной досрочной регистрацией и с мотивацией активной вакцинации населения, для создания коллективного иммунитета и защиты от вируса. На самом деле, все намного сложнее. Вакцинация никогда не защитит от проникновения вируса в организм. Она нужна для того, чтобы избежать тяжелого течения инфекции и фатальных осложнений. Антитела какое-то время находятся в кровотоке и, если они нейтрализующие, то могут связать определенные белки вируса, например, S-белок коронавируса. Но эта защита сработает только тогда, когда вирус минует первую линию защиты на слизистой ротоглотки и попадет в кровоток. У абсолютного большинства пациентов вся динамика ОРВИ, от проникновения вируса в организм до выздоровления разворачивается в верхних дыхательных путях.

О. А.: Давайте разграничим базовую вакцинацию ребенка по национальному календарю и вакцинацию взрослого населения от респираторных вирусных инфекций, то есть от гриппа и вот сейчас, от COVID-19.

Е. Г.: Особенности иммунного реагирования у каждого человека отличаются, в этом отношении мы все уникальны. С чего начинается иммунный ответ? Вирус внедряется в организм и сразу садится на слизистую оболочку носоглотки и ротоглотки — входные ворота для инфекции. Активируется врожденный иммунитет, его ключевые клетки — макрофаги — и сразу запускается воспаление. Для чего мы делаем прививку? Для того, чтобы в крови образовался пул протективных антител, которые будут блокировать вирусные белки и не давать вирусу размножаться и поражать другие клетки, уже в нижних отделах респираторного тракта. Они сработают только тогда, когда наступит генерализация инфекции, а не в первые 5-7 дней, когда весь процесс происходит на слизистых верхних дыхательных путей, для этого нужны эффективные механизмы местной защиты — секреторный IgА, макрофаги, местные Т-киллерные клетки и антимикробные белки. Таким образом, вакцина не защитит от заражения, она защитит от возможных осложнений, и только при условии выработки именно нейтрализующих антител к S-протеину.

Читайте также:  Таблица конституционные права свободы и обязанности граждан

Что касается вакцинации детей от особо опасных инфекций в соответствии с национальным календарем профилактических прививок, то здесь совсем другие механизмы реализации иммунного ответа на инфекцию изначально. Эти инфекции имеют раннюю и стойкую стадию вирусемии — присутствия вируса в крови и длительный инкубационный период, в отличие от респираторных вирусов. И после такой вакцинации формируется стойкий пожизненный иммунитет, образуются Т- и В-клетки памяти, которые всю жизнь живут вместе с нами.

О. А.: Чем отличается иммунитет после болезни, естественный, от искусственного иммунитета, достигаемого в ходе вакцинации? В первом случае слизистые защищены, а во втором нет?

Е. Г.: Не совсем так. Слизистые оболочки в полной мере никогда не могут быть защищены. Естественный или врожденный иммунитет — очень мощный и всеобъемлющий, основная масса живых существ на земле прекрасно обходится только врожденными механизмами. Высоко специфический адаптивный иммунитет — более позднее эволюционное приобретение млекопитающих, он связан с уникальной, избирательной специфичностью антигенраспознающих рецепторов на Т- и В-лимфоцитах. Если произошло хотя бы незначительное изменение генома у микроба, то иммунный ответ снова будет развиваться как в первый раз. А все респираторные вирусы, как правило, РНК-содержащие и очень быстро мутирующие. Вы уже читали про разные мутации COVID-19? Итальянская, бразильская, британская и т.д. мутации, и их будет очень много. У коронавируса есть пока несколько мутаций, но он высокомутирующий, и на каждую геномную последовательность будет разная специфичность рецепторов лимфоцитов. И что, против каждого штамма прививаться? Поэтому, довольно проблематично создать эффективную вакцину от любых респираторных вирусов.

Когда у человека уже реализовался естественный иммунный ответ на определенный вирус, даже если не было клинических признаков болезни, то выработались самые разнообразные защитные факторы, и это не только антитела! Неправильно оценивать противовирусный иммунный ответ, как антительный или гуморальный. Противовирусный ответ — это, прежде всего, Т-клеточный иммунный ответ, первая линия защиты на слизистых, макрофаги, многочисленные антимикробные белки, контактные взаимодействия между клетками, реакции, которые определяют дальнейший сценарий иммунного ответа в целом. Хорошо, если есть антитела, но они не смогут полностью защитить организм, и наоборот, если их нет — это вовсе не значит, что мы без защиты от коронавируса.

О. А.: Если мы вводим вакцину подкожно, то это только стимуляция антительного ответа и другого иммунитета не будет?

Е. Г.: Нет, разовьются разные иммунные ответы. Антиген в структуре вакцины попал в циркуляцию, необходимые процессы формирования Т-клеточного ответа обязательно будут запущены. Но абсолютно экстраполировать эту ситуацию на естественное проникновение вируса через слизистые верхних дыхательных путей нельзя. Почему мы постоянно говорим о том, что очень много «бессимптомных больных» и пациентов с легким течением инфекции? Да, как раз потому, что наши уникальные механизмы внутренней иммунной защиты срабатывают вовремя и блокируют размножение вируса. С вакциной немного другая ситуация — мы вводим в организм антиген в структуре аденовируса (Спутник V) и не можем точно утверждать, по какому механизму пойдет иммунный ответ. Если антитела уже есть, то могут возникнуть очень тяжелые побочные реакции, например, антителозависимое усиление инфекции (АЗУИ).

О. А.: Это реакция организма на вакцинацию или реакция на повторное инфицирование, когда в организме уже есть антитела, и произошло столкновение с вирусом?

Е. Г.: Может быть и та, и другая ситуация. Если человек переболел бессимптомно, хотя мне очень не нравится эта странная формулировка «бессимптомный больной», то есть просто он встретился где-то с вирусом, и у него уже есть активный защитный иммунитет, клетки памяти и антитела. При введении вакцины в этом случае возможно очень острое течение болезни, с осложнениями. Я бы рекомендовала обязательно провести исследование на наличие всех видов антител к COVID-19, прежде чем принять решение о вакцинации. АЗУИ возникает потому, что сразу образуется иммунный комплекс: антитела, которые уже есть в организме, плюс вирус и белки системы комплемента, запускается острое воспаление. Если много антител, то эти комплексы будет поглощаться клетками макрофагами, взаимодействовать с определенными рецепторами, но, вместо того, чтобы разрушиться и погибнуть, вирус продолжит размножаться в макрофагах. И в этой ситуации возможно развитие цитокинового шторма. Поэтому тем, кто уже переболел, я бы не рекомендовала вакцинироваться.

О. А.: Расскажите, пожалуйста, у всех ли после перенесенной коронавирусной инфекции появляются антитела? Можно ли переболеть и не иметь антител?

Е. Г.: Антитела всегда будут изначально, но их может быть мало, и, спустя какое-то время, они просто не будут фиксироваться методом иммуноферментного анализа, иначе говоря, останутся следовые количества антител. И в этом есть важный биологический смысл, что антитела подвергаются быстрой деградации. Это механизм иммунорегуляции, направленный на то, чтобы предотвратить потенциальные аутоиммунные процессы. Ничего хорошего нет в постоянной циркуляции по организму каких-либо антител, это канонические положения иммунологии, в любом учебнике их можно прочесть.

Кроме того, как правило, нет корреляции между клиническим течением заболевания и титром антител в крови при любых вирусных инфекциях. В моей практике есть пациенты с рецидивирующей герпетической инфекцией, но при этом с очень низким количеством антител к вирусам герпеса.

Установление клинического диагноза — это, в первую очередь — клиническое мышление врача. А сегодня мы наблюдаем такую картину, когда вся диагностика сводится лабораторным и инструментальным методам. Например, КТ. Удивляет, с какой легкостью назначается это серьезное, очень высокое по лучевой нагрузке обследование. И что мы видим? Например, 90% поражения легких по КТ? Это просто картина матового стекла, пневмонит, системное воспаление мелких сосудов и отек, это не поражение именно альвеол, если бы так было, то человек бы уже не жил. Мы должны ориентироваться на объективный статус и общее состояние пациента, на его настроение, самочувствие, активность. Если у человека все хорошо, и он прекрасно себя чувствует, а КТ показывает, например, 30% поражения легких, при этом ему все равно в ряде случаев рекомендовали срочную госпитализацию, в результате практически здоровый человек заболевал внутрибольничной бактериальной пневмонией, и все заканчивалось фатально.

О. А.: Чтобы возник цитокиновый шторм, человек должен одномоментно получить большое количество частиц коронавируса?

Е. Г.: Большое количество вирусных частиц, примерно 1000, надо получить для того, чтобы заболеть ковидом. Цитокиновый шторм развивается при синдроме активации макрофагов — самых главных клеток врожденного иммунитета, и это не такое частое осложнение, но его можно спровоцировать применением интерферонов и таких препаратов, как кагоцел и ингавирин. Что происходило год назад, с самого начала эпидемии? На первом этапе даже бессимптомных пациентов только с положительным ПЦР-тестом на коронавирус везли в госпитали, все лежали вместе. Таким образом формировались очаги инфекции внутри больниц, возрастала в геометрической прогрессии антигенная нагрузка на иммунную систему пациентов, а самое страшное — присоединялась внутрибольничная бактериальная суперинфекция, резистентная ко всем антибиотикам, которые на сегодня существуют.

Когда я увидела первые протоколы лечения COVID-19, то поняла, что, насколько это возможно, буду ограждать людей от госпитализации. Несколько видов антибиотиков, противомалярийные препараты и лекарства от ВИЧ-инфекции — от побочных эффектов такого лечения может умереть даже здоровый и молодой человек.

О. А.: Если человек получил небольшую долю коронавируса, то он легче справится с ней, чем если одномоментно получать много?

Е. Г.: Да, конечно. Когда вирусных частиц немного, скорее всего, вообще не будет никаких проявлений инфекции, гораздо опаснее высокая вирусная нагрузка.

О. А.: Полезно ли получить и пережить эту маленькую дозу?

Е. Г.: Очень полезно! Микробиота каждого человека уникальна, и чем она более разнообразна, тем лучше. Компоненты микробиома производят физиологическую микровакцинацию, постоянно стимулируют клетки врожденного иммунитета, держат их на низком старте для того, чтобы иммунитет оперативно сработал при необходимости. Нужно обязательно контактировать с антигенами. Дети, которые не посещают детский сад, все равно переболеют основными вирусными инфекциями, но уже в школе, пока не наработают адаптивный иммунный ответ.

О. А.: В гигиенической теории про вакцинацию так и говорят — она дает возможность иммунитету поработать. Это не так?

Е. Г.: Нет, это искусственная тренировка. Гигиеническая теория привела к резкому росту аллергических и аутоиммунных заболеваний! Невозможно вакцинацией воспроизвести все механизмы естественного иммунного ответа. Препараты микробных продуктов или аутовакцины в этом аспекте работают намного лучше — это вакцинация на уровне местного иммунитета. Таким способом мы помогаем клеткам иммунной системы активироваться, принимая лизаты бактерий. Может быть даже высокая температура, но это всегда хорошо, потому что, например, у часто болеющих людей хроническое воспаление протекает без температуры и затягивается, так как активного иммунного ответа нет.

О. А.: Итак, мы за базовую вакцинацию ребенка по национальному календарю, но против не до конца неизученной вакцины от респираторного вируса?

Е. Г.: Конечно. Мой ребенок — вакцинирован полностью от опасных инфекций по календарю, и даже дополнительно я его провакцинировала от менингококковой инфекции. Вакцинируем обязательно, потому что, как минимум, по туберкулезу у нас по-прежнему, не очень хорошая ситуация. Но когда мы говорим о массовой ежегодной вакцинации взрослого населения от ОРВИ, особенно о людях в возрасте 40+, с повышенными рисками аутоиммунных, сердечно-сосудистых, онкологических заболеваний, с уже накопленными соматическими мутациями в клетках, нужно быть крайне осторожными. Людей, работающих в группах профессионального риска, возможно, и надо провакцинировать, но только после тщательного сбора анамнеза и обследования.

Источник