Меню

Квадратный корень как элементарная функция



Квадратный корень: определение, примеры, свойства, график

В данной публикации мы рассмотрим, что такое квадратный корень, приведем примеры, перечислим основные свойства, а также продемонстрируем, как выглядит график его функции.

Определение квадратного корня

Арифметический квадратный корень из числа a – это такое число x , которое при возведении в квадрат (или другими словами во вторую степень) дает число a .

Квадратный корень (иногда также называют корнем второй степени) обозначается специальным знаком – . Например √ 4 , читается как “квадратный корень из четырех”.

Другой вид записи –Квадратный корень из четырех. Но цифру 2 обычно опускают, подразумевая именно ее.

Подкоренное выражение для примера выше – это 4. Однако оно может быть представлено не только числом, но и и математическим выражением, содержащим как буквы, так и цифры. Например, .

Вычисление значения x называется извлечением квадратного корня из числа a (является обратным возведению в квадрат действием):

  • √ 4 = 2
  • √ 9 = 3
  • √ 16 = 4
  • √ 25 = 5

Извлекать квадратный корень можно только из положительного числа. При этом ответ ( x ), также, всегда будет больше нуля.

Примечание:

Для удобства можно выучить или всегда иметь под рукой таблицу квадратов чисел, хотя бы до 10-20.

Свойства квадратного корня

  1. Корень произведения:
  2. Корень деления:
  3. Корень как возведение в степень:
  4. Сложение или вычитание корней не равно корню из суммы или разности: .

К квадратному корню, также, применимы свойства корней в n-ой степени.

График квадратного корня

На координатной плоскости функция выглядит следующим образом:

График квадратного корня

График берет начало в точке , является монотонно возрастающим, располагается исключительно в I четверти координатной плоскости, т.к. определен только для , при которых принимает положительные значения y .

Источник

Свойства корней: формулировки, доказательства, примеры

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств , изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a : b = a : b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению , необходимо рассмотреть, что a · b — число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде ( a · b ) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b 2 = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 ( 1 ) = 2 , 7 · 4 · 12 17 · 0 , 2 ( 1 ) .

Необходимо доказать свойство арифметического квадратного корня из частного: a : b = a : b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a : b 2 = a 2 : b 2 , а a 2 : b 2 = a : b , при этом a : b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0 : 16 = 0 : 16 , 80 : 5 = 80 : 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенства как a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a 0 .

Читайте также:  Как правильно подобрать масло по марке авто

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a 0 будет верно равенство a 2 = — a . На самом деле, в этом случае − a > 0 и ( − a ) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 — a , a 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

5 2 = 5 = 5 и — 0 , 36 2 = — 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением ( a m ) 2 , тогда a 2 · m = ( a m ) 2 = a m .

3 8 = 3 4 = 3 4 и ( — 8 , 3 ) 14 = — 8 , 3 7 = ( 8 , 3 ) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m — 1 2 · m — 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде . . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения , которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a b , выполняется неравенство a n b n ;
  8. Свойство сравнения , которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 a 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , ( 21 ) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , ( 21 ) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

8 27 3 = 8 3 27 3 и 2 , 3 10 : 2 3 10 = 2 , 3 : 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m — 1 2 · m — 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m — 1 2 · m — 1 = a очевидно. При a 0 получаем соответственно a = — a и a 2 · m = ( — a ) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m — 1 2 · m — 1 = a будет справедливо, так как за нечетной степени рассматривается — c 2 · m — 1 = — c 2 · m — 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

7 4 4 = 7 = 7 , ( — 5 ) 12 12 = — 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и ( — 3 , 39 ) 5 5 = — 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись . Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению . С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.
Читайте также:  Таблица для ворлд пад

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a b . Рассмотрим неравенство a n b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a b . Следовательно, a n b n при a b .

Для примера приведем 12 4 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 a 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 a 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Источник

Свойства корней.

Свойства квадратных корней.

  • Квадратный корень;
  • Квадратный кореньесли а ≥ 0 и b > 0;
  • Квадратный кореньесли а ≥ 0 и n — натуральное число;
  • Квадратный кореньесли а ≥ 0 и n — натуральное число.
  • Обратите внимание, (−5) 2 = 25, но Квадратный корень.
  • Корень не может равняться неположительному числу.
  • Квадратный корень— невозможно вычислить, корень из отрицательного числа не существует.
  • Если Квадратный корень, то b 2 = a, при а ≥ 0 и b ≥ 0, это одно из важнейших свойств корней.
  • Важно понимать, что квадратный корень — это другая запись степени ½:

Квадратный корень

Квадратный корень

Квадратный корень

  • Величина корня не изменится, если его показатель увеличить в n раз и одновременно возвести подкоренное значение в степень n:
  • Величина корня не изменится, если показатель степени уменьшить в n раз и одновременно извлечь корень n-й степени из подкоренного значения:
  • Корень от частного равен частному от деления корня из делимого на корень из делителя (показатели корней должны быть одинаковыми):
  • Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение:

Обратно, чтобы извлечь корень из степени, достаточно возвести в эту степень корень из основания степени:

  • Корень из произведения нескольких сомножителей равен произведению корней той же степени из этих сомножителей (тоже важное свойство корней):

Обратно, произведение корней одной и той же степени равно корню той же степени из произведения подкоренных значений:

Квадратный корень как элементарная функция.

Квадратный корень – это элементарная функция и частный случай степенной функции График функции квадратного корня преобразования графиковпри График функции квадратного корня преобразования графиков. Арифметический квадратный корень является гладким при График функции квадратного корня преобразования графиков, а в нуле он непрерывен справа, но не дифференцируется (отличительное свойтво корней).

Как функция комплексный переменный корень — двузначная функция, у которой листы сходятся в нуле.

Свойство корня как функции.

На [0; +∞) можно поставить каждому числу х в соответствие единственное число корень n-степени из x при любом значении n.

Функции корня

То есть это означает, что на множестве [0; +∞) можно говорить о функции корня:

Функции корня

Теперь определим свойства функции корня и построим ее график.

Основные свойства корня как функции:

Промежуток [0; +∞) – является областью определения.

Так как неотрицательное число является корнем n-степени из неотрицательного числа, значит промежуток [0; +∞) будет областью значения функции.

Поскольку симметричным множеством не является область определения функции, поэтому данная функция не является ни нечетной, ни четной.

Читайте также:  Таблица умножения без ответа напечатать

Операция по извлечению корня вводилась как обратная операция возведения в соответствующую степень.

Значит можно утверждать, что:

Функции корня

Теперь можно построить график функции корня.

Функции корня

Пользуясь графиком, можно записать оставшиеся свойства функции.

На промежутке [0; +∞) функция возрастает.

Сверху функция не ограничена, но она ограничена снизу, например, прямой у, которая = -0,5.

На всей области определения функция выпукла вверх.

У функции наименьшим значением будет являться 0, а наибольшего значения она не имеет.

Если в каждой из точек некоторого промежутка функция дифференцируема, то это значит, что на данном промежутке она непрерывна.

Функции корня

Функции корня

В любой точке промежутка [0; +∞) существует эта производная, исключением является только точка 0.

Поскольку в любой точке промежутка (0; +∞) функция имеет производную, значит на промежутке (0; +∞) функция дифференцируема.

Источник

Таблица корней

В данной статье мы с вами разберем такое понятие как квадратный корень, какие бывают виды корней, а так же рассмотрим таблицу корней и то как ей пользоваться.

Итак, что же такое квадратный корень. Для того чтобы это понять воспользуемся примерами из школьного курса и рассмотрим простое уравнение, типа: х2 = 4. Что бы его решить нужно понять какое число нужно возводить в квадрат для получения 4. Это не так уж и сложно так как таблица умножения подсказывает нам что это 2 либо -2. с целью упрощения математического решения и ввели понятие квадратного корня с присвоением ему специального символа ?.

Квадратным корнем положительного числа а, будет только положительное число квадрат от которого равняется а.

определение квадратного корня

Как вы думаете почему а может быть только положительное число. Опять обратимся к примеру и найдем корень для ?(-9). И это будет 32 = 9, но не — 9, а если возьмем -3. Проверим (-3)2 = 9. Опять не получается и все это из-за того что не существует таких чисел, которые в квадрате давали бы число со знаком минус.

Можно заметить что квадратный корень в решении, может быть только положительным числом, но почему тогда в первом уравнении упоминалось как 2 так и -2? Объясняю, есть квадратные уравнения и арифметические квадратные корни от числа и это разные вещи. Например х2=4 не тоже самое что х=?4.

Да, в этом легко запутаться, но когда нужно только извлечь корень от какого либо числа, то в ответе получим исключительно положительный ответ.

Для удобства и быстроты нахождения решений, существует таблица корней, которая содержит в себе уже готовые извлеченные корни. Пользуйтесь!
Верхняя строка содержит единицы, а левый столбец десятки. К примеру вам необходимо узнать квадратный корень числа 54. Ищем десятки с левой стороны (это будет цифра 5), а единицы с верху (это будет цифра 4). При пересечении этих значений и находится нужный нам ответ который равен 6,7082.

Таблица корней от 0 до 99

таблица корней

Также есть таблица квадратов, не путайте с таблицей корней. Выглядит она так:
таблица квадратов
Она удобно если вам нужно сразу получить значение двухзначного числа в квадрате. К примеру, нужно возвести 89 в квадрат. Находим 8 слева, 9 сверху, на пересечении значение квадрата — 7921.

Чем больше вы будите работать с корнями, тем реже будите пользоваться данной таблицей. Так как все значения со временем запоминаются. Это как таблица умножения, которой мы пользуемся только для изучения и запоминания.

С корнями возможно производить только три действия и это:

— умножать,
— делить,
-возводить в степень.

Свойства и Примеры объединены и показаны в таблице.
свойства корней

Когда срочно нужна курсовая работа, а времени на её написание практически нет. Стоит обратиться за помощью, которая находиться на сайте http://zakazat-kursovuyu.ru/index.php/zakaz-kursovoj. Ценой и качеством Вы будите приятно удивленны.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Источник

Adblock
detector