Меню

Лекция 2 Статистическое распределение

18.6.2. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка объ­ема П, в которой значение X1 некоторого исследуемого призна­ка Х наблюдалось П1 раз, значение X2 — п2 раз, . значение XKNk раз. Значения Xi называются Вариантами, а их после­довательность, записанная в возрастающем порядке,— Вариационным рядом. Числа Ni называются Частотами, а их отно­шения к объему выборки

Относительными частотами. При этом Ni = П. Модой Мo называется варианта, имеющая наибольшую частоту. Ме­дианой те называется варианта, которая делит вариационный ряд на две части с одинаковым числом вариант в каждой. Если число вариант нечетно, т. е. K = 2L + 1, то Me = Xl+1; если же число вариант четно (k = 2L), То те = (Xl + Xl+1)/2. Разма­хом варьирования называется разность между максимальной и минимальной вариантами или длина интервала, которому принадлежат все варианты выборки:

Перечень вариант и соответствующих им частот называ­ется Статистическим распределением выборки. Здесь имеет­ся аналогия с законом распределения случайной величины: в теории вероятностей — это соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике — это соответствие между наблюда­емыми вариантами и их частотами (относительными частота­ми). Нетрудно видеть, что сумма относительных частот равна единице: Wi = 1.

Пример 2. Выборка задана в виде распределения частот:

Найти распределение относительных частот и основные харак­теристики вариационного ряда.

Решение. Найдем объем выборки: П = 2 + 4 + 5 + 6 + 3 = 20. Относительные частоты соответственно равны W1 = 2/20 = 0,1; W2 = 4/20 = 0,2; W3 = 5/20 = 0,25; W4 = 6/20 = 0,3; W5 = 3/20 = 0,15. Контроль: 0,1 + 0,2 + 0,25 + 0,3 + 0,15 = 1. Искомое распределение относительных частот имеет вид

Мода этого вариационного ряда равна 12. Число вариант в дан­ном случае нечетно: K = 2 ∙ 2 + 1, поэтому медиана Me = X3 = 8. Размах варьирования, согласно формуле (18.48), R = 17 – 4 = 13.

Источник

Относительную частоту и построить таблицу статистического распределения

В математической статистике исследуются утверждения, которые могут быть сделаны на основе измерения некоторой величины, на простейшем примере поясним постановку (одной из многих) задач математической статистики.

Пусть требуется измерить некоторую величину . Результаты измерений

естественно рассматривать как значения случайных величин , полученных в данном эксперименте. Если измерительный инструмент не имеет систематической ошибки, то можно положить . Следовательно, возникает задача оценить параметр . Для решения задачи рассмотрим случайную величину

Это обстоятельство приводит к мысли построить статистические характеристики:

Первая представляет среднее арифметическое наблюденных значений случайной величины и статистическую дисперсию — во втором случае. В соответствии с законом больших чисел эти среднеарифметические сходятся по вероятности соответственно к математическому ожиданию величины и к дисперсии

При ограниченности наблюдений эксперимента заменой и на и совершаем погрешность, а при небольшом числе наблюдений величины , являются случайными величинами. Возникает задача об оценке неизвестных параметров , случайной величины на основе экспериментальных данных, т.е. задача — найти подходящие значения этих параметров.

Множество результатов измерений величины называется выборкой объема . Для того, чтобы иметь возможность воспользоваться аппаратом теории вероятностей, целесообразно наблюдаемую величину рассматривать как случайную величину, функцию распределения которой

Полученный статистический материал , , . наблюдений представляет собой первичные данные о величине, подлежащей статистической обработке. Обычно такие статистические данные оформляются в виде таблицы, графика, гистограммы и т.д.

Если выборка объема содержит различных элементов , причем встречается раз, то число называется частотой элемента , а отношение называется относительной частотой элемента . Очевидно, что

Вариационным (статистическим) рядом называется таблица, первая строка которой содержит в порядке возрастания элементы ‘, а вторая — их частоты (относительные частоты .

Полигоном частот (относительных частот) выборки называется ломаная с вершинами в точках ( , ( ( , ).

Функция , где — объем выборки, а — число значений в выборке, меньших , называется эмпирической функцией распределения. Функция служит оценкой неизвестной функции распределения , т.е. .

Пусть теперь — непрерывная случайная величина с неизвестной плотностью вероятности . Для оценки по выборке разобьем область значений на интервалы длины . Обозначим через середины интервалов, а через число элементов выборки, попавших в указанный интервал. Тогда — оценка плотности вероятности в точке . В прямоугольной системе координат построим прямоугольники с основаниями и высотами , т.е. площади прямоугольника, равной относительной частоте данного разряда. Полученная таким образом фигура называется гистограммой выборки.

Читайте также:  Австралопитек исторический возраст таблица

Пример 156. Имеются данные о количестве студентов в 30 группах физико-математического факультета:

26 25 25 26 25 23
23 24 19 23 20 19
22 24 24 23 20 23
24 19 21 18 21 18
20 18 18 21 15 15

Найти вариационный ряд количества студентов в группах и размах варьирования. Построить полигон частот.

Решение. Записывая исходные данные в порядке возрастания, составим вариационный ряд:

15 18 19 20 21 22 23 24 25 26
2 4 2 4 3 1 5 4 3 2

Для построения полигона частот обозначим на оси абсцисс возможные значения признака, а на оси ординат соответствующие частоты и полученные точки соединим отрезками.

Пример 157. Школьникам предлагалось разгадать несколько числовых закономерностей и вписать в пропуски недостающие числа. Оценка осуществлялась по количеству правильно решенных задач и дала следующие результаты:

Кол-во баллов 13 14 15 16 17 18 19 20
Кол-во школьников 2 3 2 4 12 10 8 9

Составить статистическое распределение количества школьников по количеству набранных баллов и построить полигон относительных частот.

Решение. Пусть = <количество набранных баллов>, a = <относительные частоты>. Тогда статистическое распределение выборки можно представить в виде следующей таблицы:

X 13 14 15 16 17 18 19 20
0,04 0,06 0,04 0,08 0,24 0,2 0,16 0,18

Чтобы построить полигон относительных частот, отложим на оси абсцисс значения , а на оси ординат — относительные частоты . После этого последовательно соединим полученные точки отрезками.

Пример 158. В 2002 году количество служб, представляющих гражданам жилищные субсидии, по сельским районам области распределено следующим образом:

Построить эмпирическую функцию распределения.

Решение. Найдем сначала статистический ряд распределения числа служб в районах области.

1 4 5 10

Эмпирическую функцию распределения находим аналогично интегральной функции (см. §13 ) [перейти].

Пример 159. Построить гистограмму следующей выборки объема 50

интервала Границы

1 3 — 7 5 2 7 — 12 10 3 12 — 17 20 4 17 — 21 8 5 21 — 28 7

Решение. Найдем плотность относительной частоты для каждого интервала и заполним последний столбец таблицы:

Построим на оси абсцисс заданные интервалы и проведем над этими интервалами отрезки, параллельные оси абсцисс и находящиеся на расстояниях, равных соответствующим плотностям относительной частоты .

Из способа построения гистограммы следует, что полная ее площадь равна единице.

Пример 160. Число школ Ярославской области в 2002 — 2003 учебном году по малым городам и районам составило:

Построить гистограмму распределения числа школ по районам области.

Решение. Выберем границы интервалов и составим по данной выборке следующую таблицу

интервала Границы

1 13 — 17 6 2 17 — 20 3 3 20 — 25 4 4 25 — 31 4

Аналогично предыдущему примеру строим гистограмму числа школ, распределенных по малым городам и районам области.

«Сглаживая» полученную гистограмму, получаем «похожесть» данного дискретного закона распределения на классический показательный (непрерывный) закон. В этом и заключается основное предназначение гистограмм выборок.

Вопросы для самоконтроля

На каких методах основано изучение статистических данных?

Основные задачи математической статистики.

Какие способы отбора из генеральной совокупности вы знаете?

Какая выборка называется представительной?

В чем отличие вариационного от статистического ряда?

Для чего используется полигон частот?

Свойства эмпирической функции распределения.

В каком случае и для чего строятся гистограммы?

I. 311. Записать выборку 2, 7, 3, 5, 4, 10, 5, 5, 2, 8, 10, 2, 7, 7, 7, 5, 4, 2, 4, 7, 8 в виде: а) вариационного ряда; б) статистического ряда.

312. Найдите эмпирическую функцию распределения для выборки, представленной вариационным рядом:

1 2 4 7
10 20 30 40

313. Имеются данные о количестве сельских населенных пунктов районов Ярославской области с численностью населения более 500 человек:

Большесельский — 4, Борисоглебский — 2, Брейтовский — 1, Гаврилов-Ямский — 2, Даниловский — 2, Любимский — 1, Мышкинский — 0, Некоузский — 6, Некрасовский — 5, Первомайский — 2, Переславский — 11, Пошехонский — 0, Ростовский — 11, Рыбинский — 12, Тутаевский — 3, Угличский — 4, Ярославский — 27.

Найдите вариационный ряд количества населенных пунктов Ярославской области с численностью населения более 500 человек. Постройте полигон частот.

314. В 2002 году количество крупных и средних промышленных предприятий по районам ( в том же порядке, что и в предыдущей задаче) области распределено следующим образом:

Читайте также:  Таблица размеров колец bvlgari

Постройте полигон частот и эмпирическую функцию распределения.

315. Количество учащихся, получивших аттестат с медалью, в 2001 году по городам и районам Ярославской области:

г. Ярославль — 280, г. Рыбинск — 66, г. Ростов — 61, г. Переславль — 27, г. Углич — 32, г. Тутаев — 36;

Большесельский — 8, Борисоглебский — 3, Брейтовский — 11, Гаврилов-Ямский — 7, Даниловский — 19, Любимский — 11, Мышкинский — 3, Некоузский — 15, Некрасовский — 7, Первомайский — 6, Переславский — 1, Пошехонский — 8, Ярославский — 30.

Найдите вариационный ряд распределения медалистов, размах варьирования и среднее число медалистов по городам и районам области.

316. Посевные площади картофеля (тыс. гектаров) в сельских хозяйствах Ярославской области по районам:

1,5; 1,5; 0,6; 1,3; 0,9; 0,9; 0,6; 1,3; 1,1; 0,6; 1,1; 0,9; 1,6; 1,3; 0,8; 0,4; 1,1.

Найдите статистический ряд распределения посевных площадей и постройте полигон относительных частот.

II. 317. Построить гистограмму выборки, представленной в виде таблицы частот. Объем выборки .

Номер интервала

Сумма частот вариант интервала

13 — 15

24

318. Построить гистограмму выборки объема , представленной в виде таблицы частот:

Источник



Лекция 2. Статистическое распределение

date image2018-01-08
views image7543

facebook icon vkontakte icon twitter icon odnoklasniki icon

При систематизации данных выборочных обследований используются статистические дискретные и интервальные ряды распределения.

2.1. Статистическое дискретное распределение. Полигон

Пусть из генеральной совокупности извлечена выборка, причем x1 наблюдалось n1 раз, x2 n2 раз, xk -nk раз и — объем выборки.

Наблюдаемые значения xi – варианты, последовательность вариант, записанная в возрастающем порядке – вариационный ряд. Число наблюдений вариантыni называют частотой, а ее отношение к объему выборки – относительной частотой .

Определение. Статистическим (эмпирическим) распределением выборки называют последовательность вариант xi и соответствующих им частот ni или относительных частот wi .

Статистическое распределение выборки удобно представлять в форме таблицы распределения частот, называемой статистическим дискретным рядом распределения:

x1 x2 xm
n1 n2 nm

При этом сумма всех частот равна объему выборки:

или в виде таблицы распределения относительных частот:

x1 x2 . xm
w1 w2 . wm

(сумма всех относительных частот равна единице )

Пример 1. При измерениях в однородных группах обследуемых получены следующие выборки: 71, 72, 74, 70, 70, 72, 71, 74, 71, 72, 71, 73, 72, 72, 72, 74, 72, 73, 72, 74 (частота пульса). Составить по этим результатам статистический ряд распределения частот и относительных частот.

Решение. 1) Статистический ряд распределения частот:

xi
ni

2) Объем выборки: n=2+4+8+2+4=20. Найдем относительные частоты, для чего разделим частоты на объем выборки . Напишем распределение относительных частот:

xi
wi 0.1 0.2 0.4 0.1 0.2

Контроль: .

Полигоном частот называют ломаную, отрезки, которой соединяют точки с координатами . Для построения полигона частот на оси абсцисс откладывают варианты х2, а на оси ординат – соответствующие им частоты ni.

Полигоном относительных частот называют ломаную, отрезки, которой соединяют точки с координатами . Для построения полигона относительных частот на оси абсцисс откладывают варианты хi, а на оси ординат соответствующие им частоты wi.

Пример 2. Построим полигон частот и полигон относительных частот по данным примера 1.

2.2. Статистический интервальный ряд распределения. Гистограмма

Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются в том случае, когда отличных друг от друга вариант в выборке не слишком много, или тогда, когда дискретность по тем или иным причинам существенна для исследователя. Если же интересующий нас признак генеральной совокупности Х распределен непрерывно или его дискретность нецелесообразно (или невозможно) учитывать, то варианты группируются в интервалы.

Часто разбиение на интервалы и группировку осуществляют с равным шагом разбиения. При этом можно пользоваться следующими рекомендациями по выборке:

· — размах выборки;

· — шаг разбиения (ширина интервала), где k – число интервалов;

· формула Старджеса для определения числа интервалов, n – объем выборки;

· ;

Полученную группировку удобно представить в форме частотной таблицы, которая носит название статистический интервальный ряд распределения:

Интервалы группировки [h;h1) [h1;h2) . [hk-2;hk-1) [hk-1;hk)
Частоты n1 n2 . nk-1 nk

Аналогическую таблицу можно образовать, заменяя частоты ni относительными частотами:

Интервалы группировки [h;h1) [h1;h2) . [hk-2;hk-1) [hk-1;hk)
Относительные частоты w1 w2 . wk-1 wk

Наиболее информативной графической формой частот является специальный график, называемый гистограммой частот.

Гистограмма частот — ступенчатая фигура, состоящая из прямоугольников, основаниями которых

служат частичные интервалы длиною h, а высоты равны отношению (плотность частоты).

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии .

Площадь i-го частичного прямоугольника равна — сумме частот вариант i-го интервала; следовательно, площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Гистограммой относительных частотназывают ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению (плотность относительной частоты).

Для построения гистограммы относительных частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии . Площадь i-го частичного прямоугольника равна — относительной частоте вариант, попавших в i-й интервал. Следовательно, площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

Выборочная медиана – это середина вариационного ряда, значение, расположенное на одинаковом расстоянии от левой и правой границы выборки.

Выборочная мода – это наиболее вероятное, т.е. чаще всего встречающееся, значение в выборке.

Пример 3. Из очень большой партии деталей извлечена случайная выборка объема 50; интересующий нас признак Х — размеры деталей, измеренные с точностью до 1см, представлен следующим вариационным рядом: 12, 14, 13, 15, 18, 20, 21, 22, 22, 11, 13, 14, 17, 19, 16, 17, 15, 20, 19, 21, 20, 15, 17, 14, 18, 12, 12, 15, 18, 18, 21, 22, 21, 20, 21, 15, 19, 19, 19, 18, 21, 14, 15, 17, 16, 14, 13, 13, 12, 11. Найти статистический интервальный ряд распределения, построить гистограмму частот и относительных частот.

Решение. 1) , т.е. k = 7;

Интервалы группировки 11-12,6 12,6-14,2 14,2-15,8 15,8-17,4 17,4-19 19-20,6 20,6-22
Частоты ni
Относительные частоты wi 0,12 0,18 0,12 0,12 0,12 0,16 0,18

2)

3) Гистограммы частот и относительных частот:

Источник

Статистическое распределение выборки частот и относительных частот

Федеральное агентство по образованию РФ

Кафедра прикладной математики.

Курсовая работа “Экспериментальная обработка данных”

Выполнил: Углов А.С.

Проверил: Малыгин А.А.

Имеется количественный признак X- количество букв в слове текста.

1) Построить статистическое распределение выборки частот и относительных частот.

2) Построить полигон и гистограмму частот, разбив диапазон значений признака [Xmin ;Xmax] на несколько разных равных промежутков.

3) Построить эмпирическую функцию распределения.

4) Найти точечные оценки математического ожидания, дисперсии и среднего квадратичного отклонения.

Информация, расположенная в шапке отчета, бу­дет напечатана в начале отчета. Обычно, в начале отчета печатают заголовок отчета и текущую дату или время. Кроме того, заголовок отчета может содержать названия предприятия и/или подразде­ления, выпускающих отчет, и графические изоб­ражения товарных знаков. Под­вал отчета может быть использован для отображе­ния групповых значений по всему отчету.

По умолчанию содержимое фирменных и/или области страницы печатается на каждой странице отчета. При этом в верхней части страницы печатается информация из верхнего колонтитула, а внизу — из нижнего колонтитула. Нижний колонтитул позволяет отоб­разить в отчете групповые значения по каждой странице отчета. Поля, размещенные в верхнем (нижнем) колонтитуле, содержат информацию из первой (последней) записи, которая печатается на этой странице.

При создании отчетов в ряде случаев бывает полезно сгруппировать данные из различных запи­сей и поместить в отчете групповую информацию по каждой из групп. Например, вам требуется не просто распечатать таблицу ADDRESS, а напеча­тать список абонентов отдельно для каждого горо­да и отобразить в отчете, сколько абонентов про­живает в каждом из городов. Для решения этой и аналогичных ей задач в отчет вводится одна или несколько областей групп. Каждая область группы содержит верхний и нижний групптитулы, информация из которых отображается в отчете перед и

Системы управления базами данных

1)Статистическое распределение выборки или простой статистический ряд представляет собой таблицу, в которой первая строка содержит варианты, а вторая- соответствующие частоты или относительные частоты.

Источник