Меню

Логические схемы и таблицы истинности



Таблица истинности

  • Что такое таблицы истинности
  • Логические операции
  • Логические выражения
  • Инверсия
  • Конъюнкция
  • Дизъюнкция
  • Правила составления таблицы истинности
  • Примеры построения таблицы истинности

Что такое таблицы истинности

Таблица истинности — это таблица, описывающая логическую функцию, а именно отражающую все значения функции при всех возможных значениях её аргументов.

Таблица истинности необходима для совершения логических операций. Она включает в себя n+1 столбцы и 2 n строки, где n — число используемых переменных. В первых n столбцах представлены разные значения аргументов функции, а в n+1 столбце представлены значения функции, которые она принимает на данном наборе аргументов.

Набором называется совокупность значений переменных. А = 0, В = 1. В случае, когда количество переменных n, число различных наборов будет равно 2 N . Например, для трех переменных число разных наборов будет равно 2 3 = 8.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Для создания таблиц истинности используются обозначения логических значений 0 (ложь) и 1 (истина).

Можно встретить вариацию таблицы, в которой число столбцов равно n + число используемых логических операций. В подобной таблице в первые n столбцы, так же как и в первом варианте, вписаны наборы аргументов, а остальные столбцы заполнены значениями подфункций, которые входят в запись функции. Благодаря этим промежуточным вычислениям, упрощается расчет конечного значения функции.

Применение таблиц истинности чаще всего встречается в булевой алгебре и в цифровой электронной технике для описания работы логических схем.

Логические операции

Логические операции — построение из одного или нескольких высказываний нового высказывания.

Результатом может являться не только образование нового высказывания, но и изменение содержания или объема уже данных высказываний. В случае логической операции истинность значения нового высказывания всецело определяется истинностью значения исходных высказываний.

К логическим операциям относятся конъюнкция, дизъюнкция, импликация, разделительная дизъюнкция, эквиваленция, антиконъюнкция, антидизъюнкция.

Логические выражения

Логическое выражение — это запись, принимающая логическое значение «истина» или «ложь».

Их можно разделить на два типа:

    выражения, использующие операции сравнения и принимающие логические значения. Например, выражение a Определение

Инверсия или логическое отрицание — это логическая операция, при выполнении которой из данного высказывания получается новое высказывание. Это высказывание является отрицанием исходного высказывания.

Унарной в данном случае называется операция, которая используется относительно одной величины.

Конъюнкция

Конъюнкция — это логическое умножение. Эта операция, для которой требуются два и более логических величины. Конъюнкция соединяет логические высказывания при помощи связки «и». Связка изображается символом ∧.

Конъюнкция может быть истинной только в том случае, если оба высказывания истинны. Например, A ∧ B, если A = ложь, а B = истина, является ложным.

Дизъюнкция

Дизъюнкция — логическое сложение. Эта логическая операция соединяет два и более высказываний с помощью связки «или». Эта связка обозначается как ∨.

Логическое высказывание будет истинным, если истинно хотя бы одно из условий. Например, A ∨ B истинно, даже если А = истина, а В = ложь. Высказывание будет ложным только в том случае, если ложны и А, и В.

Правила составления таблицы истинности

Таблицу истинности можно построить для любого логического выражения. В этой таблице будут отражены все значения, которые принимает выражение при всех наборах значений входящих в него переменных.

Строить таблицы истинности необходимо по следующему алгоритму:

  1. Вычислить число переменных в выражении (n).
  2. Вычислить общее количество логических операций в выражении.
  3. Определить последовательность, в которой будут выполняться логические операции.
  4. Установить количество столбцов в таблице — количество переменных и количество операций.
  5. Внести в шапку таблицы переменные и операции, соблюдая последовательность, определенную в пункте 3.
  6. Высчитать количество строк в таблице, используя формулу m = 2 n
  7. Занести в таблицу наборы входных переменных. Они представляют собой целый ряд n-разрядных двоичных чисел от 0 до 2 n −1.
  8. Заполнить таблицу, совершая логические операции.

Примеры построения таблицы истинности

Задача

Построим таблицу истинности и решим выражение \( F = (A \vee B) \wedge (¬A \vee ¬B)\) . Будем пользоваться приведенным выше алгоритмом.

  1. Число переменных в выражении n = 2.
  2. Общее количество логических операций в выражении — 5.
  3. Последовательность выполнения логических операций — 1, 5, 2, 4, 3.
  4. Количество столбцов — 7. Логические переменные (А и В) + логические операции \(\vee\) , \(\wedge\) , \(¬\) , \(\vee\) , \(¬\) = 2 +5 = 7.
  5. Количество строк — 5, исходя из m =2 n , таким образом 2 2 = 4, 4+1 (строка заголовков столбцов) = 5.
  6. Заполним таблицу.

Решение

А В \(А \vee В\) ¬А ¬В \(¬А \vee ¬В\) \((A \vee B) \wedge (¬A \vee ¬B)\)
1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1

После заполнения таблицы, ответ будет выглядеть следующим образом:

F = 0 при A = B = 0 и A = B = 1

Задача

Построим еще одну таблицу истинности и решим выражение \(F = X \vee Y \wedge ¬Z\)

  1. Число переменных в выражении n = 3.
  2. Общее количество логических операций в выражении — 3.
  3. Последовательность выполнения логических операций — 3, 2, 1.
  4. Количество столбцов — 6. Логические переменные (X, Y, Z) + логические операции \( \vee\) , \(\wedge\) , ¬ = 3 + 3 = 6.
  5. Количество строк — 9, исходя из m =2 n , таким образом 2 3 = 8, 8+1 (строка заголовков столбцов) = 9.
  6. Заполним таблицу.
Читайте также:  Какая зарплата бывает и когда е положено платить

Решение

X Y Z ¬ Z \(Y \wedge ¬Z\) \(X \vee Y \wedge ¬Z\)
q
1
1 1 1 1
1 1 1
1 1 1
1 1 1 1 1
1 1 1 1

После заполнения таблицы, ответ будет выглядеть следующим образом:

F = 0, при X = Y = Z = 0; при X = Y = 0 и Z = 1.

Источник

Логические схемы и таблицы истинности

Логические схемы создаются для реализации в цифровых устройствах булевых функций (функций алгебры логики).

В цифровой схемотехнике цифровой сигнал — это сигнал, который может принимать два значения, рассматриваемые как логическая «1» и логический «0».

Логические схемы могут содержать до 100 миллионов входов и такие гигантские схемы существуют. Представьте себе, что булева функция (уравнение) такой схемы была потеряна. Как восстановить её с наименьшими потерями времени и без ошибок? Наиболее продуктивный способ — разбить схему на ярусы. При таком способе записывается выходная функция каждого элемента в предыдущем ярусе и подставляется на соответствующий вход на следующем ярусе. Этот способ анализа логических схем со всеми нюансами мы сегодня и рассмотрим.

Логические схемы реализуются на логических элементах: «НЕ», «И», «ИЛИ», «И-НЕ», «ИЛИ-НЕ», «Исключающее ИЛИ» и «Эквивалентность». Первые три логических элемента позволяют реализовать любую, сколь угодно сложную логическую функцию в булевом базисе. Мы будем решать задачи на логические схемы, реализованные именно в булевом базисе.

Для обозначения логических элементов используется несколько стандартов. Наиболее распространёнными являются американский (ANSI), европейский (DIN), международный (IEC) и российский (ГОСТ). На рисунке ниже приведены обозначения логических элементов в этих стандартах (для увеличения можно нажать на рисунок левой кнопкой мыши).

На этом уроке будем решать задачи на логические схемы, на которых логические элементы обозначены в стандарте ГОСТ.

Задачи на логические схемы бывают двух видов: задача синтеза логических схемы и задачи анализа логических схем. Мы начнём с задачи второго типа, так как в таком порядке удаётся быстрее научиться читать логические схемы.

Чаще всего в связи с построением логических схем рассматриваются функции алгебры логики:

  • трёх переменных (будут рассмотрены в задачах анализа и в одной задаче синтеза);
  • четырёх переменных (в задачах синтеза, то есть в двух последних параграфах).

Рассмотрим построение (синтез) логических схем

  • в булевом базисе «И», «ИЛИ», «НЕ» (в предпоследнем параграфе);
  • в также распространённых базисах «И-НЕ» и «ИЛИ-НЕ» (в последнем параграфе).

Задача анализа логических схем

Задача анализа заключается в определении функции f , реализуемой заданной логической схемой. При решении такой задачи удобно придерживаться следующей последовательности действий.

  1. Логическая схема разбивается на ярусы. Ярусам присваиваются последовательные номера.
  2. Выводы каждого логического элемента обозначаются названием искомой функции, снабжённым цифровым индексом, где первая цифра — номер яруса, а остальные цифры — порядковый номер элемента в ярусе.
  3. Для каждого элемента записывается аналитическое выражение, связывающее его выходную функцию с входными переменными. Выражение определяется логической функцией, реализуемой данным логическим элементом.
  4. Производится подстановка одних выходных функций через другие, пока не получится булева функция, выраженная через входные переменные.

Пример 1. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы, что уже показано на рисунке. Запишем все функции, начиная с 1-го яруса:

Теперь запишем все функции, подставляя входные переменные x, y, z :

В итоге получим функцию, которую реализует на выходе логическая схема:

Таблица истинности для данной логической схемы:

x y z f
1 1 1 1 1 1 1
1 1 1
1 1 1
1 1
1 1 1
1 1
1 1
1 1

Найти булеву функцию логической схемы самостоятельно, а затем посмотреть решение

Пример 2. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Пример 3. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Продолжаем искать булеву функцию логической схемы вместе

Пример 4. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы. Запишем все функции, начиная с 1-го яруса:

Теперь запишем все функции, подставляя входные переменные x, y, z :

В итоге получим функцию, которую реализует на выходе логическая схема:

Таблица истинности для данной логической схемы:

x y z f
1 1 1 1 1
1 1 1 1
1 1 1 1
1
1 1 1 1
1 1 1
1 1 1
1 1

Пример 5. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы. Структура данной логической схемы, в отличие от предыдущих примеров, имеет 5 ярусов, а не 4. Но одна входная переменная — самая нижняя — пробегает все ярусы и напрямую входит в логический элемент в первом ярусе. Запишем все функции, начиная с 1-го яруса:

Читайте также:  Размер обуви мужской таблица европа россия

Теперь запишем все функции, подставляя входные переменные x, y, z :

В итоге получим функцию, которую реализует на выходе логическая схема:

Таблица истинности для данной логической схемы:

x y z f
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1 1

Задача синтеза логических схем в булевом базисе

Разработка логической схемы по её аналитическому описанию имеет название задачи синтеза логической схемы.

Каждой дизъюнкции (логической сумме) соответствует элемент «ИЛИ», число входов которого определяется количеством переменных в дизъюнкции. Каждой конъюнкции (логическому произведению) соответствует элемент «И», число входов которого определяется количеством переменных в конъюнкции. Каждому отрицанию (инверсии) соответствует элемент «НЕ».

Часто разработка логической схемы начинается с определения логической функции, которую должна реализовать логическая схемы. В этом случае дана только таблица истинности логической схемы. Мы разберём именно такой пример, то есть, решим задачу, полностью обратную рассмотренной выше задаче анализа логических схем.

Пример 6. Построить логическую схему, реализующую функцию с данной таблицей истинности:

x y f
1 1
1
1 1

Решение. Разбираем таблицу истинности для логической схемы. Определяем функцию, которая получится на выходе схемы и промежуточные функции, которые на входе принимают аргументы x и y . В первой строке результатом реализации выходной функции при том, что значения входных переменных равны единицам, должен быть логический «0», во второй строке — при разных значениях входных переменных на выходе тоже должен быть логический «0». Поэтому нужно, чтобы выходная функция была конъюнкцией (логическим произведением).

Теперь подбираем промежуточные функции. Получаем следующую таблицу для промежуточных функций и выходной функции — конъюнкции промежуточных функций:

1
1 1 1
1

Для построения логической схемы необходимо элементы, реализующие логические операции, указанные в выходной функции, располагать в порядке, заданной этой функцией. Из выражения видно, что понадобятся 3 схемы «НЕ», две двухвходовых схемы «И» и одна двухвходовая схема «ИЛИ». В соответствии с выходной функцией получаем следующую логическую схему:

А теперь очередь дошла до функций алгебры логики четырёх переменных. Сначала выполним синтез логической схемы в булевом базисе.

Пример 7. Построить в булевом базисе логическую схему, реализующую функцию алгебры логики

Решение. Для построения логической схемы потребуются 4 схемы «НЕ», одна трёхвходовая схема «И», 2 двухвходовые схемы «И» и одна трёхвходовая схема «ИЛИ». В соответствии с этим получаем следующую логическую схему:

Задача синтеза логических схем в базисах «И-НЕ» и «ИЛИ-НЕ»

Часто для сокращения числа микросхем используют элементы «И-НЕ» или/и «ИЛИ-НЕ». Рассмтрим примеры, как построить схему, реализующую ту же функцию, что в предыдущем примере, но, сначала в базисе «И-НЕ», а затем в базисе «ИЛИ-НЕ».

Пример 8. Построить в базисе «И-НЕ» логическую схему, реализующую функцию алгебры логики .

Решение. Логическая функция должна быть приведена к виду, содержащему только операции логического умножения (конъюнкции) и инвертирования (отрицания). Это делается при помощи двойного инвертирования исходного выражения функции и применения закона де Моргана:

Для построения логической схемы потребуются 8 схем «И-НЕ». Получаем следующую логическую схему:

Пример 9. Построить в базисе «ИЛИ-НЕ» логическую схему, реализующую функцию алгебры логики .

Источник

Построение таблиц истинности

Вы будете перенаправлены на Автор24

Логическая функция – функция, переменные которой принимают одно из двух значений: $1$ или $0$.

Любую логическую функцию можно задать с помощью таблицы истинности: набор всех возможных аргументов записывается в левой части таблицы, а соответствующие значения логической функции – в правой части.

Таблица истинности – таблица, которая показывает, какие значения примет составное выражение при всех возможных наборах значений простых выражений, входящих в него.

Равносильными называются логические выражения, последние столбцы таблиц истинности которых совпадают. Равносильность обозначается с помощью знака $«=»$.

Готовые работы на аналогичную тему

При составлении таблицы истинности важно учитывать следующий порядок выполнения логических операций:

Приоритетом в выполнении порядка выполнения операций пользуются скобки.

Алгоритм построения таблицы истинности логической функции

Определяют количество строк: кол-во строк = $2^n + 1$ (для строки заголовка), $n$ – количество простых выражений. Например, для функций двух переменных существует $2^2 = 4$ комбинации наборов значений переменных, для функций трех переменных – $2^3 = 8$ и т.д.

Определяют количество столбцов: кол-во столбцов = кол-во переменных + кол-во логических операций. При определении количества логических операций учитывают также порядок их выполнения.

Заполняют столбцы результатами выполнения логических операций в определенной последовательности, учитывая таблицы истинности основных логических операций.

Составить таблицу истинности логического выражения $D=\bar \vee (B \vee C)$.

Решение:

Определим количество строк:

Количество простых выражений – $n=3$, значит

кол-во строк = $2^3 + 1=9$.

Определим количество столбцов:

Количество переменных – $3$.

Количество логических операций и их последовательность:

Кол-во столбцов = $3 + 3=6$.

Заполним таблицу, учитывая таблицы истинности логических операций.

По данному логическому выражению построить таблицу истинности:

Читайте также:  Состав реквизитов документов таблица

Решение:

Определим количество строк:

Количество простых выражений – $n=3$, значит

кол-во строк = $2^3 + 1=9$.

Определим количество столбцов:

Количество переменных – $3$.

Количество логических операций и их последовательность:

  1. отрицание ($\bar$);
  2. дизъюнкция, т.к. она находится в скобках ($A \vee B$);
  3. конъюнкция ($(A\vee B)\bigwedge \overline$);
  4. отрицание, которое обозначим $F_1$ ($\overline<(A\vee B)\bigwedge \overline>$);
  5. дизъюнкция ($A \vee C$);
  6. конъюнкция ($(A\vee C)\bigwedge B$);
  7. отрицание, которое обозначим $F_2$ ($\overline<(A\vee C)\bigwedge B>$);

Кол-во столбцов = $3 + 8 = 11$.

Заполним таблицу, учитывая таблицу истинности логических операций.

Алгоритм построения логической функции по ее таблице истинности

  1. Выделяют в таблице истинности строки со значением функции, равным $1$.
  2. Выписывают искомую формулу как дизъюнкцию нескольких логических выражений. Количество этих выражений равно количеству выделенных строк.
  3. Каждое логическое выражение в этой дизъюнкции записать как конъюнкцию аргументов функции.
  4. В случае, когда значение какого-то из аргументов функции в соответствующей строке таблицы принимает значение $0$, то этот аргумент записать в виде его отрицания.

По данной таблице истинности некоторой логической функции $Y(A,B)$ cоставить соответствующую логическую функцию.

Решение:

  1. Значение функции равно $1$ в $1$-й и $3$-й строках таблицы.
  2. Поскольку имеем $2$ строки, получим дизъюнкцию двух элементов:

  • Каждое логическое выражение в этой дизъюнкции запишем как конъюнкцию аргументов функции $A$ и $B$: $\left(A\wedge B\right)\vee \left(A\wedge B\right)$
  • В случае, когда значение в соответствующей строке таблицы равно $0$, запишем этот аргумент с отрицанием, получим искомую функцию:\[Y\left(A,B\right)=\left(\overline\wedge \overline\right)\vee \left(A\wedge \overline\right).\]
  • Источник

    Таблица истинности

    Инструкция . При вводе с клавиатуры используйте следующие обозначения:

    Клавиша Оператор
    ! ¬ Отрицание (НЕ)
    | | Штрих Шеффера (И-НЕ)
    # Стрелка Пирса (ИЛИ-НЕ)
    * & Конъюнкция (И)
    + v Дизъюнкция (ИЛИ)
    ^ Исключающее ИЛИ, сумма по модулю 2 (XOR)
    @ Импликация (ЕСЛИ-ТО)
    % Обратная импликация
    = ≡ (

    bc необходимо ввести так: a*b*c+a*b=c+a=b*c
    Для ввода данных в виде логической схемы используйте этот сервис.

    Правила ввода логической функции

    1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
    2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
    3. Максимальное количество переменных равно 10 .

    Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики — алгебры логики. В алгебре логики можно выделить три основные логические функции: «НЕ» (отрицание), «И» (конъюнкция), «ИЛИ» (дизъюнкция).
    Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
    Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
    Если определены не все значения, функция называется частично определённой.
    Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
    Для представления функции алгебры логики используется следующие способы:

    • словесное описание – это форма, которая используется на начальном этапе проектирования имеет условное представление.
    • описание функции алгебры логики в виде таблицы истинности.
    • описание функции алгебры логики в виде алгебраического выражения: используется две алгебраические формы ФАЛ:
      а) ДНФ – дизъюнктивная нормальная форма – это логическая сумма элементарных логических произведений. ДНФ получается из таблицы истинности по следующему алгоритму или правилу:
      1) в таблице выбираются те строки переменных для которых функция на выходе =1 .
      2) для каждой строки переменных записывается логическое произведение; причём переменные =0 записываются с инверсией.
      3) полученное произведение логически суммируется.
      Fднф= X 123 ∨ Х1 x 2Х3 ∨ Х1Х2 x 3 ∨ Х1Х2Х3
      ДНФ называется совершенной, если все переменные имеют одинаковый ранг или порядок, т.е. в каждое произведение обязательно должны включаться все переменные в прямом или инверсном виде.
      б) КНФ – конъюнктивная нормальна форма – это логическое произведение элементарных логических сумм.
      КНФ может быть получена из таблицы истинности по следующему алгоритму:
      1) выбираем наборы переменных для которых функция на выходе =0
      2) для каждого набора переменных записываем элементарную логическую сумму, причём переменные =1 записываются с инверсией.
      3) логически перемножаются полученные суммы.
      Fскнф=(X1 V X2 V X3) ∧ (X1 V X2 V X 3) ∧ (X1 V X 2 V X3) ∧ ( X 1 V X2 V X3)
      КНФ называется совершенной, если все переменные имеют одинаковый ранг.

    По алгебраической форме можно построить схему логического устройства, используя логические элементы.

    Рисунок1- Схема логического устройства

    Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможных логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

    Источник