Меню

Молоток Шмидта характеристики и советы по использованию



Молоток Шмидта: характеристики и советы по использованию

  1. Особенности и назначение
  2. Устройство и принцип работы
  3. Инструкция по применению
  4. Разновидности
  5. Преимущества и недостатки

Молоток Шмидта был изобретен еще в 1948 году, благодаря работам ученого из Швейцарии – Эрнеста Шмидта. Появление данного изобретения сделало возможным измерение прочности конструкций из бетона на территории, где проводится стройка.

Особенности и назначение

На сегодняшний день практикуется несколько способов проверки бетона на прочность. Основой механического способа является контроль взаимосвязи между прочностью бетона и его другими механическими свойствами. Процедура определения данным методом основана на сколах, сопротивлениях отрывам, твердости в момент сжатия. Во всем мире зачастую используется молоток Шмидта, при помощи которого определяются прочностные характеристики.

Данный прибор по-другому называется склерометром. Он позволяет правильно проверить прочность, а также осуществить обследование железобетонной и бетонной стен.

Измеритель твердости нашел свое применение в следующих сферах:

  • измерение прочности бетонного изделия, а также строительного раствора;
  • оказывает помощь в обнаружении слабых мест в бетонных изделиях;
  • позволяет осуществлять контроль качества готового объекта, что собран из бетонных элементов.

Ассортимент измерителя довольно широк. Модели могут иметь отличие в зависимости от характеристик проверяемых предметов, например, толщины, размера, энергии удара. Молотки Шмидта могут охватывать бетонные изделия в диапазоне от 10 до 70 Н/мм². А также пользователь может приобрести электронный инструмент для измерения прочности бетона ND и LD Digi-Schmidt, которые работают автоматически, выдавая результаты измерений на монитор в цифровом виде.

Устройство и принцип работы

Конструкции большинства склерометров состоят из следующих элементов:

  • плунжер ударного типа, индентор;
  • корпус;
  • ползунки, что оснащены стержнями для направления;
  • конус в основе;
  • кнопки стопора;
  • штоки, что обеспечивает направленность функционирования молотка;
  • колпачки;
  • кольца разъема;
  • задняя крышка прибора;
  • пружина со сжимающими свойствами;
  • предохраняющие элементы конструкций;

  • бойки с определенным весом;
  • пружины с фиксирующими свойствами;
  • ударяющие элементы пружин;
  • втулка, что направляет функционирование склерометра;
  • войлочные кольца;
  • индикаторы шкалы;
  • винты, что осуществляют процесс сцепки;
  • гайки контроля;
  • штифты;
  • пружины предохранения.

Функционирование склерометра имеет основу в виде отскока, характеризующегося упругостью, что формируется при измерениях импульса удара, который возникает в конструкциях при их нагрузке. Устройство измерителя произведено так, что после осуществления ударных действий об бетон пружинная система дает ударнику возможность сделать свободный отскок. Градуированная шкала, вмонтированная на приборе, вычисляет искомый показатель.

После использования инструмента стоит пользоваться таблицей значений, в которой описаны пояснения полученных измерений.

Инструкция по применению

Функционирует мотоблок Шмидта на вычислениях ударных импульсов, что возникают во время нагрузок. Удары производятся о твердые поверхности, в которых не имеется арматур из металла. Использовать измеритель необходимо по следующей схеме:

  1. приставить ударный механизм к поверхности, которая будет исследоваться;
  2. используя обе руки, стоит осуществить плавное нажатие на склерометр в направлении к бетонной поверхности до того момента, пока не появиться удар бойка;
  3. на шкале показаний можно увидеть показания, что высвечиваются после проведения вышеперечисленных действий;
  4. чтобы показания были абсолютно точными, проверка прочности при помощи молотка Шмидта должна проводиться 9 раз.

Проводить измерения необходимо на участках с небольшими размерами. Их предварительно расчерчивают на квадраты и после исследуют поочередно. Каждое из показаний прочности необходимо зафиксировать, а после сравнить с предыдущими. При процессе стоит придерживаться расстояния между ударами в 0,25 см. В некоторых ситуациях данные, что получены, могут отличаться друг от друга либо быть идентичными. Из полученных результатов высчитывается среднее арифметическое значение, при этом возможна незначительная погрешность.

Важно! Если во время проведения измерений удар попал на пустой заполнитель, то полученные данные не учитываются. В данной ситуации необходимо провести повторный удар, но в другой точке.

Разновидности

По принципу действия измерители прочности бетонных конструкций делят на несколько подтипов.

  • Склерометр с механическим воздействием. Он оснащен цилиндрическим корпусом с расположенным внутри ударным механизмом. При этом последний оснащен индикаторной шкалой, имеющей стрелку, а также отталкивающей пружиной. Этот вид молота Шмидта нашел свое применение при определении прочности бетонной конструкции, имеющей пределы от 5 до 50 МПа. Измерителем данного вида пользуются при работе с бетонными и железобетонными предметами.
  • Измеритель прочности с ультразвуковым действием. В его конструкции имеется встроенный или внешний блок. Показания можно увидеть на специальном дисплее, который имеет свойство памяти и сохраняет данные. Молоток Шмидта имеет возможность подключения к компьютеру, так как дополнительно оснащен разъемами. Данный вид склерометра работает с показателями прочности от 5 до 120 МПа. Память измерителя сохраняет до 1000 версий на протяжении 100 суток.

Сила энергии удара оказывает прямое влияние на прочность бетонной и железобетонной поверхностей, поэтому они могут быть нескольких типов.

  • МШ-20. Этот инструмент характеризуется наименьшей силой ударов – 196 Дж. Он способен точно и качественно определить показатель прочности раствора из цемента и кирпичной кладки.
  • Молоток РТ работает со значением в 200–500 Дж. Измеритель принято использовать, чтобы измерять прочность бетона первой свежести в стяжках из смеси песка и цемента. Склерометр имеет маятниковый тип, может проводить вертикальные и горизонтальные замеры.
  • МШ-75 (L) работает с ударами в 735 Дж. Основным направлением в применении молотка Шмидта является установка прочности бетона, который характеризуется толщиной не более 10 см, а также кирпича.
  • МШ-225 (N) – это самый мощный тип склерометра, который работает с силой удара в 2207 Дж. Инструмент способен определить прочность конструкции, что имеет толщину от 7 до 10 см и более. Прибор имеет диапазон измерения от 10 до 70 МПа. Корпус оснащен таблицей, что имеет 3 графика.

Преимущества и недостатки

Молоток Шмидта имеет следующие преимущества:

  • эргономичность, которая достигается удобством во время использования;
  • надежность;
  • отсутствие зависимости от угла удара;
  • точность в измерениях, а также возможность воспроизводимости результатов;
  • объективность оценивания.

Измерители характеризуются уникальностью дизайна, конструкцией высокого качества. Каждая из проведенных процедур с использованием склерометра является быстрой и точной. Отзывы пользователей прибора свидетельствуют о том, что молоток имеет простой интерфейс, а также выполняет все необходимые ему функции.

Недостатков измерители практически не имеют, из минусов можно выделить следующие характеристики:

  • зависимость величины отскока от угла удара;
  • влияние внутреннего трения на величину отскока;
  • недостаточность герметизации, которая способствует преждевременной потере точности.

В настоящее время характеристика бетонных смесей полностью зависит от их прочности. Именно от этого свойства зависит, насколько безопасной будет конструкция в готовом виде. Вот почему применение молотка Шмидта – это важная процедура, которую обязательно стоит проводить при возведении бетонных и железобетонных сооружений.

О том, как использовать мотлоток Шмидта, вы узнаете из видео ниже.

Читайте также:  Нормы удельных мощностей искусственного освещения

Источник

ОМШ–1 склерометр механический (молоток Шмидта)

– измеряемая прочность бетона – 5…40 МПа;

– усилие сжатия пружины для удара – не более 70 Н;

– нормированная энергия удара – 1,8 Дж;

– радиус сферы индентора – 25 мм;

– размеры 364х68х65 мм

Принцип действия основан на ударе с нормированной энергией бойка о поверхность бетона и измерении высоты его отскока в условных единицах шкалы прибора, являющейся косвенной характеристикой прочности на сжатие.

Вопросы для защиты лабораторной работы №16

1. Назовите косвенные характеристики прочности бетона.

2. Назовите методы неразрушающего контроля, которые используются дляопределения прочности бетона в мостовом сооружении.

3. Назовите достоинства и недостатки молотка Кашкарова.

4. На чем основан принцип действия молотка Шмидта?

5. Объясните, в чем состоит сущность метода отрыва со скалыванием бетона?

Лабораторная работа № 17

ОПРЕДЕЛЕНИЕ ВОДОНЕПРОНИЦАЕМОСТИ БЕТОНА

Цель работы – освоить методику определения водонепроницаемости бетона.

Согласно ГОСТ 26633 – 91, для бетонов конструкций к которым предъявляются требования ограничения проницаемости или повышенной плотности и коррозионной стойкости, устанавливают следующие марки по водонепроницаемости W2,W4,W6,W8,W10,W12,W14,W16,W18,W20.

Марка бетона по водонепроницаемости соответствует давлению воды при котором еще не наблюдается ее просачивание на четырех из шести образцах при испытании по методу «мокрого пятна» (см. таблицу 51).

Таблица 51-Марки бетона по водонепроницаемости.

Водонепроницаемость в серии образцов, 0,2 0,4 0,6 0,8 1,0 1,2
МПа
Марка бетона по водонепроницаемости В2 В4 В6 В8 В10 В12

При определении водонепроницаемости температура в помещении должна быть ( 20 ± 5) 0 С, а относительная влажность воздуха не менее 60 % .

Методика определения основана на применении прибора АГАМА-2Р, разработанного ЦНИИС Минтрансстроя СССР для измерения воздухопроницаемости пористых строительных материалов.

В соответствие с инструкцией по эксплуатации определяют значение параметра воздухопроницаемости бетона ai (см 3 /с) для каждого образца или обратное ему значение сопротивления бетона проникновению воздуха mi (c/cм 3 ).

По полученным данным, с использованием градуировочной зависимости между воздухопроницаемостью бетона ai (сопротивлением проникновениювоздуха mi) и водонепроницаемостью W ,определяют марку бетона по водонепроницаемости.

Материалы и оборудование:

Устройство типа АГАМА – 2Р для определения воздухопроницаемости бетона; герметизирующую мастику ГОСТ 14791-79; пластину для проверки герметичности (оргстекло ГОСТ 9784-75);металлический шпатель.

Отбор образцов

Для определения водонепроницаемости используют образцы – кубы ребром длиною 150 мм .Число образцов в серии – 6.

Изготовление образцов осуществляется в соответствии с ГОСТ 10180 -90.Торцевые поверхности образцов перед испытанием очищают от поверхностной пленки цементного камня и следов уплотняющего состава металлической щеткой или другим инструментом.Изготовленные образцы хранят в камере нормального твердения при температуре (20± 2) 0 С и относительной влажности воздуха не менее 95 %.Перед испытанием образцы выдерживают в помещении лаборатории не менее суток. При хранении должна быть исключена возможность попадания воды на их поверхность.

Проведение испытаний

Подготовить поверхность испытываемого материала так,чтобы на ней не было видимых следов влаги,смазочных и гидроизоляционных материалов, пленки цементного раствора, неровностей, превышающих по высоте 3 мм.

Подготовить прибор к работе. Для этого,вынуть его из футляра и убедиться в отсутствии дефектов, препятствующих работе с ним.Подключить прибор к источнику питания.Если прибор находился при отрицательной температуре, его следует включать не ранее чем через час после выдержки при положительной температуре.

При работе от сети переменного тока вынуть из рукоятки 6 (см. приложение Б) элементы питания, если они были установлены ранее.Для этогоснять крышку 9, отвинтив винты , и после удаления элементов снова закрепить крышку на рукоятке. Подключить штекер блока питания к прибору,затем вилку блока к сети переменного тока 220 В.

Включить тумблеры «П» и «И»(13 и 14), для чего перевести их в положение обозначенное точкой.При этом на индикаторе 11 должны засветиться цифры 000,0 .Выключить тумблеры «П» и «И».

Проверить герметичность прибора.Установить рукоятки6врабочее положение (см рисунок Б1 а))и закрепить их фиксаторами 7 развернув последние рукоятками к корпусу прибора.

Перевести рычаги прибора в верхнее положение (см рисунок Б1 б)) отведя пальцем крючок 8 вправо для снятия собачки 5 с выступа кронштейна 3 потянув их в направлении приборной панели: при этом торец поршня 2 должен выдвинуться за поверхность рабочего фланца камеры 1 на 2-5 мм. Перевернуть прибор рабочим фланцем вверх и установить его на горизонтальную поверхность.

Приготовить из герметизирующей мастики,входящей в комплект поставки,жгут диаметром 6-9 мм и уложить его по кольцевой риске на фланце корпуса камеры.

Закрыть клапан давления, вращая колпачок 4 по часовой стрелке до упора.

Установить пластину из комплекта поставки на горизонтальную плоскость

Установить прибор торцом поршня 2 на пластину. Плавно нажать на рукоятки вниз до защелкивания собачки 5 на выступе кронштейна 3.При этом стрелка 10 должна переместиться в сектор 2 окна 15.

Включить тумблеры 13 и 14 .осторожно открывая клапан давления вращением колпачка 4 против часовой стрелки, установить правый край флажка стрелки 10 к одной из отметок градуированного сектора окна 15,затем плавно закрыть клапан и оставить прибор в таком положении на 90 минут .После прохождения этого времени флажок не должен дойти до следующей отметки.

При работе от сети после окончания измерений отключить блок питания сначала от сети , а затем от прибора. Снять прибор с пластины .Для этого полностью открыть клапан давления , вращая колпачок 4 против часовой стрелки до упора .При этом стрелка 10 должна переместиться на нулевую отметку.

Плавно переместить рукоятки прибора в верхнее положение до касания с корпусом, развернув фиксаторы 7 на 180 0 . Снять прибор с пластины и очистить шпателем рабочую поверхность фланца и пластины от мастики.

Для проведения испытаний следует установить прибор на выбранном и подготовленном участке поверхности испытуемого материала и проделать операции по п.п. 17.1 – 17.2.При этом стрелка 10 должна переместиться в сектор 2 или в зону между секторами 1 и 2 окна 15.

Если стрелка не заняла указанного положения, следует отвернуть колпачок клапана давления 4 (стрелка 10 переместится при этом на нулевую отметку) переместить рукоятки прибора вверх, не снимая прибора с поверхности,снова закрыть клапан давления и выполнить операции по пп.17.1 – 17.2. Если стрелка опять не переместилась в требуемое положение, значит сопротивление материала протеканию воздуха так мало, что выходит за диапазон действия прибора.

Читайте также:  Внутренняя политика владимира красное солнышко таблица и внешняя

При требуемом положении стрелки, включить тумблеры 13 и 14 и убедиться, что на цифровом табло 11 появились цифры 000,0.

Оставить прибор на поверхности материала и следить за перемещением стрелки 10 и показаниями индикатора 11.

По мере поступления воздуха из окружающей среды через материал в полость камеры стрелка 10 перемещается вправо и при ее прохождении под фотодатчиком (зона 1) происходит измерение,о чем свидетельствует увеличение показаний индикатора 11.По окончании измерений на индикатореустанавливается постоянное число равное сопротивлению протеканию воздуха через материал.

Для ускорения испытаний допускается приблизить стрелку 10 к фотодатчику слегка отвернув клапан давления 4 (против часовой стрелки ) ,а затем вновь закрыв его.

По окончании измерений зафиксировать показания цифрового индикатора в журнале измерений. Выключить тумблеры 13 и 14 .Отключить прибор и снять его с испытуемой поверхности.

Обработка результатов

Полученные значения аi ( mi) , бетона образцов записывают в порядке их возрастания и определяют среднее арифметическое значение ас ( mс) двух средних образцов (третьего и четвертого )в качестве параметра ,характеризующего воздухопроницаемость бетона в серии.

Водонепроницаемость бетона определяют по таблице 2 или, в случае невозможности использования таблицы , по экспериментально устанавливаемой градуировочной зависимости .

Таблица 52-Таблица для определения водонепроницаемости бетона.

Параметр воздухонепроницаемости бетона ас, см 3 /с. Сопротивлениебетонапрониканиювоздуха mс, с/см 3 . Марка бетона поводонепроницаемости W.
0,325-0,224 3,1-4,5
0,223-0,154 4,6-6,5
0,153-0,106 6,6-9,4
0,105-0,0728 9,5-13,7
0,0727-0,0510 13,8-19,6
0,0509-0,0345 19,7-29
0,0344-0,0238 29,1-42
0,0237-0,0164 42,1-60,9
0,0163-0,0113 61-88,5
0,0112-0,077 88,6-130,2

Проверку возможности использования таблицы 2 осуществляют в соответствии c пп. 7.1 и 7.2 приложения 4 ГОСТ 12730.5-84 /2/, установление градуировочной зависимости – по пп. 7.3 – 7.6. приложения 4 ГОСТ 12730.5-84 Проверку возможности использования таблицы 2 проводят перед началом применения настоящего ускоренного метода и каждый раз при изменении вида качества применяемых цемента , добавок и заполнителей.

По таблице 2 или по установленной градуировочной зависимости определяют марку бетона по водонепроницаемости (W) , соответствующую полученному значению ас или mс

Вопросы для защиты лабораторной работы №17

1. Что такое водонепроницаемость?

2. Марки бетона по водонепроницаемости.

3. Чему соответствует марка бетона по водонепроницаемости?

4. Каким образом проводится отбор образцов?

Источник

Молоток Шмидта (Склерометр) — назначение, виды, инструкция по применению

Бетон относится к одному из самых распространенных типов конструкций, от его качества и прочности во многом зависит долговечность и надежность всего объекта в целом. Неудивительно, что определение прочностных свойств является очень важной задачей в процессе возведения объекта и сдачи его в эксплуатацию. Для проверки качества бетонных изделий, без разрушений, применяют – Молоток Шмидта. В это статье мастер сантехник расскажет о его использовании.

Для проверки прочности бетона в качестве инструмента неразрушающего контроля применяют молоток Шмидта, изобретенный в 1948 году в Швейцарии. Инженер Э. Шмидт (E. Schmidt) снабдил своё изобретение способностью точно выявлять механические показатели прочности бетона:

  • Твердость при сжатии;
  • Растяжимость;
  • Сопротивление отрыву;
  • Сопротивление изгибу;
  • Усилие при скалывании.

Применение бетона, устойчивого к механическим воздействиям и агрессивным средам — залог долговечности и прочности зданий. Поэтому в строительстве придают огромное значение тестированию бетона на прочность.

Из чего состоит склерометр

Термин «склерометр» означает «измеритель твердости». Конструктивно прибор состоит из 23 элементов.

Конструктивно включает в себя (см. рисунок): 1. ударный плунжер или индентор; 2. бетонная поверхность, над которой проводят контроль прочности; 3. корпус; 4.ползунок, оснащённый направляющими стержнями; 5. конус корпусной части; 6. кнопка-стопор; 7. шток бойка, обеспечивающий направление работы инструмента; 8. шайба для установки бойка; 9. колпачок; 10. кольцо для разъёма; 11. задняя крышка инструмента; 12. сжимающая пружина; 13. предохраняющая часть конструкции; 14. боек определенной массы; 15. пружина для фиксации; 16. ударяющая пружина; 17. втулка, направляющая работу молотка; 18. войлочное кольцо; 19. индикатор шкалы Шмидта; 20. винт для сцепления; 21. контрольная гайка; 22. штифт; 23. предохраняющая пружина

Некоторые модели доукомплектовывают предохранителем и контрольной гайкой, а также 4 пружинами (сжимающая, ударяющая, предохраняющая, фиксирующая). Обязательно присутствуют сцепляющий винт, штифт, шкала Шмидта, дисплей.

Принцип работы молотка Шмидта

Исправный склерометр Шмидта показывает прочность бетона при совершении по его поверхности удара с последующим упругим отскоком. Насколько тестируемый бетон устойчив к разрушающим механическим воздействиям, оказывается известно из статистических данных.

Прибор измеряет ударный импульс, возникающий при приложении к твердой поверхности тестируемого объекта механической нагрузки. Упрощенно алгоритм работы прибора выглядит так:

  • Ударный плужнер (индентор) прижимается к поверхности бетона, где нет металлических частей (арматуры);
  • За счет пружины индентор ударяет по тестируемой поверхности;
  • Система четырех пружин выполняет возврат ударника (плужнера) в исходное положение посредством свободного отскока.

Современный строительный рынок выпускает склерометры трех типов: механический, электронный и ультразвуковой. Первые два типа выполняют измерение по стандартизированному ГОСТом ударно-импульсному методу. Он заключается в определении длины отскока встроенного механизма, который передает удар твердой поверхности.

Механический прибор обладает вытянутой формой, похожей на увеличенную шариковую ручку. Внутри него вмонтирован ударный боек с пружиной, а снаружи – шкала, отображающая выдерживаемое поверхностью давление. Это самое простое из существующих устройств, которое обладает значительной погрешностью и небольшим спектром применения.

Электронный аппарат внешне похож на механический, но имеет гораздо меньший размер и дополнительно снабжен электронным прибором. Этот прибор отображает измеряемые показатели с учетом температурной погрешности, а работает всего от двух батареек. Электронный аппарат имеет меньшую погрешность и может применяться не только на бетонных, но и композитных, металлических, кирпичных и мраморных поверхностях.

Ультразвуковой тип рассчитывает прочность материалов по времени и скорости излучаемой волны. Корпус инструмента выполнен из пластика, на лицевой части расположены клавиши и табло, а сбоку размещены два контакта. Как и электронный, этот аппарат обладает функцией сохранения проведенных измерений и работает от батареек.

Каждый вид аппарата имеет свои характерные особенности.
Для ультразвуковых моделей это:

  • Возможность обмена данными с компьютером;
  • Удобное управление и настройка прибора при помощи кнопок и интерфейса;
  • Выключение при длительном перерыве в использовании;
  • Память для сохранения измерений;
  • Озвучивание процесса работы;
  • Автоматическое изменение волн;
  • Возможность поиска дефектов и трещин.

Отличительными чертами электронных моделей являются:

  • Способность записи измерений;
  • Возможность перевода показателей на ПК;
  • Функция сортировки измеренных данных;
  • Изменение направления ударного воздействия.

Специфичность механических моделей заключается в следующем:

  • Возможность работы при температуре – 40°;
  • Низкая стоимость;
  • Высокая погрешность;
  • Большой вес.
Читайте также:  Html таблица align center

Классификация по энергии удара

По силе удара различают 4 основных модификации склерометра:

  • Тип N — Энергия удара — 2,207 Нм. Значения отскока считываются со шкалы для последующего расчета среднего значения. Значения прочности на сжатие могут считываться с диаграммы преобразований.
  • Тип L — Энергия удара — 0,735 Нм. Модель с энергией удара в три раза меньшей, чем у модели N. Модель отличается меньшей энергией удара, используется для тонкостенных объектов толщиной от 50 до 100 мм или для контроля малогабаритных объектов (как вариант, изделий из искусственного камня или кернов).

Инструкция по применению

Начинают испытание с выбора подходящего участка на поверхности объекта. Затем прибор ударным механизмом прижимается к участку исследуемого объекта.

Плавный нажим выполняют сразу двумя руками — до появления звука удара бойка о поверхность.

После удара на шкале появляется числовое значение показателя твёрдости.
Взаимосвязь между силой сжатия на бетон и его прочностью следующая:

  • Наименее прочный свежий бетон выдерживает давление от 1 до 10 Мпа;
  • Обычный, застывший, бетон — от 10 до 70 Мпа;
  • Отвердевший раствор разрушается при сжатии от 70 до 100 Мпа;
  • Сверхпрочный выдерживает сжатие более 100Мпа.

Чтобы ручной измеритель показал достоверный результат, выполните не менее 9 измерений с минимальным расстоянием между пробами в 25 мм.

Чтобы случайно не протестировать один участок дважды, поверхность бетона маркируют — например, рисуют 9 квадратов.

Каждый бетонный квадрат замеряют, фиксируя результат для последующего анализа. Измерение не засчитывается (подлежит повтору на другом участке), если боек ударил по поверхности, скрывающей пустоту.

Все 9 проб могут быть идентичными по величинам или немного расходиться. Анализ данных строится на выведении среднего арифметического из результатов по 9 ударам.

Не применяйте прибор в сложных условиях, изменяющих характеристики материала (повышенные / пониженные температуры, воздействие механических, термических или химических агентов).

Бетонные конструкции по истечении 28 суток после заливки показывают разную твердость при сжатии (максимальная погрешность не превышает 13.5%). Твердость зависит от класса и марки строительного материала:

Таблица %1 Среднее значение прочности экспериментального образца бетона в виде куба со стороной 15 см на сжатие в зависимости от марки и класса
Принятые обозначения: М (марка), начинается с М15 до М800 (соответствуют показателям прочности от 50 до 1000 кг/см2) и В (класс) – от В1 до В45 как показатель кубиковой прочности в МПа.

Советы по выбору

К главным характеристикам всех типов склерометров относят несколько параметров:

  • Погрешность измерений. Самая большая погрешность у механических моделей. Она обычно не указывается, но зачастую достигает 20%. А также у механических моделей наибольшая периодичность поломок. Для электронных этот показатель составляет 5%, а наименьший у ультразвуковой аппаратуры: 1%.
  • Рабочий интервал прочности. У механических аппаратов он составляет 60 МПа, у электронных – 100. У ультразвуковых интервал изменяется по времени и скорости.
  • Комфорт эксплуатации. Механическим аппаратом пользоваться менее удобно из-за отсутствия сохранения результатов и большого веса (1 кг).
  • Цена. В этом показателе все наоборот: самым дорогим является ультразвуковой прибор.

Если составить рейтинг наилучшего прибора, то лидером, бесспорно, окажется ультразвуковой, так как он опережает другие по всем показателям, кроме цены.

Лучше всего для покупки выбирать последние модели популярных производителей измерительных приборов. В топ компаний, выпускающих качественную продукцию, входят фирма Интерприбор с приборами серии «Оникс», компания Condtrol с одноименной продукцией, а также фирмы Schmidt Hammer и RGK.

Источник

Молоток Шмидта (склерометр) — прибор для измерения прочности строительных материалов

Молоток Шмидта (склерометр)

Молоток Шмидта (склерометр) прибор для измерения прочности строительных материалов

Молоток Шмидта (склерометр)

Молоток Шмидта (склерометр) прибор для измерения прочности строительных материалов

Молоток Шмидта (склерометр)

Описание Молоток Шмидта (склерометр)

Молоток Шмидта NOVOTEST МШ – прибор, использующий самый популярный в мире неразрушающий метод измерения прочности строительных материалов (в первую очередь бетона) – метод Шмидта. Он заключается в измерении высоты отскока бойка после ударного воздействия на поверхность исследуемого материала с нормированной (известной) энергией удара.

С помощью градуировочных таблиц поставляемых с прибором значение высоты отскока переводится в значение прочность бетона (ГОСТ 22690). Такой прибор не разрушает исследуемые материалы и позволяет оперативно производить измерения в месте складирования этих материалов либо исследовать уже созданные строительные конструкции (стены, полы, потолки и т.п.) в помещениях и на открытом воздухе.

Склерометр имеет высокую точность показаний, надежную конструкцию и очень прост в использовании. Метод измерения прибором соответствует ГОСТ 18105-2010, ГОСТ 22690, ISO/DIS 8045, EN 12 504-2, ENV 206, DIN 1048, ASTM D 5873 (горные породы), ASTM C 805.

NOVOTEST МШ имеет 3 модификации (модели), различающиеся значениями энергии удара и позволяющие подобрать прибор в зависимости от характеристик материала, который предстоит исследовать.

С помощью специализированной калиброванной наковальни (дополнительная опция) пользователь всегда может самостоятельно проверить работоспособность и точность показаний склерометра.

Назначение Молоток Шмидта NOVOTEST МШ

  • бетона
  • кирпича
  • камней и каменных блоков
  • горных пород
  • раствора в швах кирпичных кладок

Прибор позволяет контролировать однородность материала, определять зоны плохого уплотнения и тд.

Особенности Молоток Шмидта NOVOTEST МШ

  • самый распространенный метод измерения прочности строительных материалов в мире
  • высокая точность измерения
  • проверенная и надежная конструкция
  • простое применение, не требующее специальных навыков
  • не большие габариты и вес прибора
  • 3 модификации с различными значениями энергии удара
  • шлифовальный камень для подготовки поверхности в комплекте

Варианты применения в зависимости от энергии удара:

МШ-225 — самый «мощный» и наиболее распространенный молоток Шмидта. Применяется для измерения прочности бетона толщиной 70-100мм и больше. Используется для измерения прочности массивных горных пород. Энергия удара — 2207Дж (2,207 Нм).

МШ-75 – обладает энергией удара в 735Дж (0,735 Нм) и является средней модификацией молотка Шмидта. Главным образом применяется для определения прочности тонкостенных и небольших бетонных изделий (толщина стенки менее 100 мм), горных пород и камня невысокой прочности и кирпича.

  • МШ-20 – модификация с наименьшей энергией удара — 196Дж (0,196Нм). Применяется в основном для определения прочности раствора в швах кирпичной кладки.
  • Устройство прибора Молоток Шмидта NOVOTEST МШ

    1. Индентор (ударный плунжер)
    2. Контролируемая поверхность
    3. Корпус
    4. Ползунок с направляющим стержнем
    5. Конусная часть корпуса
    6. Кнопка-стопор
    7. Направляющий шток бойка
    8. Установочная шайба
    9. Колпачок
    10. Разъемное кольцо
    11. Задняя крышка
    12. Пружина сжатия
    13. Предохранитель
    14. Боёк
    15. Фиксирующая пружина
    16. Ударная пружина
    17. Направляющая втулка
    18. Войлочное кольцо
    19. Окно со шкалой Шмидта
    20. Сцепляющий винт
    21. Контргайка
    22. Штифт
    23. Пружина предохранителя

    Источник