Меню

Область спектра длина волны таблица

Видимое излучение

Электромагнитное излучение
Синхротронное
Циклотронное
Тормозное
Тепловое
Монохроматическое
Черенковское
Переходное
Радиоизлучение
Микроволновое
Терагерцевое
Инфракрасное
Видимое
Ультрафиолетовое
Рентгеновское
Гамма-излучение
Ионизирующее
Реликтовое
Магнито-дрейфовое
Двухфотонное
Спонтанное
Вынужденное

Видимое излучение — электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок [1] [2] спектра с длинами волн приблизительно от 380 (фиолетовый) до 780 нм (красный) [3] . Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова). [4] Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра.

В спектре содержатся не все цвета, которые различает человеческий мозг. Таких оттенков, как розовый или маджента, нет в спектре видимого излучения, они образуются от смешения других цветов.

Видимое излучение также попадает в «оптическое окно», область спектра электромагнитного излучения, практически не поглощаемая земной атмосферой. Чистый воздух рассеивает голубой свет несколько сильнее, чем свет с большими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящему в видимый диапазон. Например, пчёлы и многие другие насекомые видят свет в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300—400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете. [5] [6]

Содержание

История

Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах. [7]

Ньютон первый использовал слово спектр (лат. spectrum — видение, появление) в печати в 1671 году, описывая свои оптические опыты. Он сделал наблюдение, что когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся с различной скоростью в прозрачной среде. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, индиго и фиолетовый. Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели. [8] [9] Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетого цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Гёте, в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму, на краях луча проявляются красно-желтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если приблизить эти края достаточно близко друг к другу.

В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.

В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз использует три различных вида рецепторов.

Характеристики границ видимого излучения

Длина волны, нм 740 380
Энергия фотонов, Дж 2,61·10 −19 4,97·10 −19
Энергия фотонов, эВ 1,6 3,1
Частота, Гц 3,94·10 14 7,49·10 14
Волновое число, см −1 1,32·10 4 2,50·10 4

Спектр видимого излучения

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разным углом. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены световыми волнами одной длины (или очень узким диапазоном), называются спектральными цветами. [10] Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380—440 790—680 2,82—3,26
Синий 440—485 680—620 2,56—2,82
Голубой 485—500 620—600 2,48—2,56
Зелёный 500—565 600—530 2,19—2,48
Жёлтый 565—590 530—510 2,10—2,19
Оранжевый 590—625 510—480 1,98—2,10
Красный 625—740 480—400 1,68—1,98

См. также

Примечания

  1. Thomas J. Bruno, Paris D. N. Svoronos. CRC Handbook of Fundamental Spectroscopic Correlation Charts. — CRC Press, 2005.
  2. Б. И. Степанов. Введение в химию и технологию органических красителей. 2-е изд. — М.: «Химия», 1977.
  3. ГОСТ 7601-78. Физическая оптика. Термины, буквенные обозначения и определения основных величин
  4. Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М .: Советская энциклопедия, 1981.
  5. Cuthill Innes C Ultraviolet vision in birds // Advances in the Study of Behavior / Peter J.B. Slater. — Oxford, England: Academic Press. — Vol. 29. — P. 161. — ISBN 978-0-12-004529-7
  6. Jamieson Barrie G. M. Reproductive Biology and Phylogeny of Birds. — Charlottesville VA: University of Virginia. — P. 128. — ISBN 1578083869
  7. Coffey PeterThe Science of Logic: An Inquiry Into the Principles of Accurate Thought. — Longmans, 1912.
  8. Hutchison, NielsMusic For Measure: On the 300th Anniversary of Newton’s Opticks. Colour Music (2004). Архивировано из первоисточника 20 февраля 2012.Проверено 11 августа 2006.
  9. Newton Isaac Opticks. — 1704.
  10. Thomas J. Bruno, Paris D. N. Svoronos. CRC Handbook of Fundamental Spectroscopic Correlation Charts. CRC Press, 2005.
Наиболее известная формула из ОТО — закон сохранения энергии-массы
Просмотр этого шаблона Электромагнитный спектр
γ-излучение | рентген | УФ | видимый свет | ИК | терагерцевое излучение | микроволны | радиоволны
Видимый спектр фиолетовый | синий | голубой | зелёный | жёлтый | оранжевый | красный
Микроволны W | V | Q | Ka | K | Ku | X | C | S | L
Радиоволны КВЧ/EHF | СВЧ/SHF | УВЧ/UHF | ОВЧ/VHF | ВЧ/HF | СЧ/MF | НЧ/LF | ОНЧ/VLF | ИНЧ/ULF | СНЧ/SLF | КНЧ/ELF
Длины волн Ультракороткие волны | Короткие волны | Средние волны | Длинные волны

Wikimedia Foundation . 2010 .

Смотреть что такое «Видимое излучение» в других словарях:

видимое излучение — видимый свет свет Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне от 0,40 до 0,76 мкм. Примечания. Термин «свет» имеет два значения: более широкое (оптическое излучение) и более узкое (видимое… … Справочник технического переводчика

Читайте также:  Стоит ли смешивать фунгициды и инсектициды

ВИДИМОЕ ИЗЛУЧЕНИЕ — (видимый свет, свет) область спектра эл. магн. колебаний, непосредственно воспринимаемая человеческим глазом. Характеризуется длинами волн в диапазоне от 400 до 760 нм. (см. СВЕТ) (в узком смысле). Физический энциклопедический словарь. М.:… … Физическая энциклопедия

Видимое излучение — см.: Свет … Реклама и полиграфия

видимое излучение — 3.87 видимое излучение: Оптическое излучение, которое может непосредственно вызвать зрительное ощущение. [МЭС 60050 845 01 03] Примечание В настоящем стандарте так обозначается электромагнитное излучение в диапазоне длин волн от 400 до 700 нм.… … Словарь-справочник терминов нормативно-технической документации

видимое излучение — regimoji spinduliuotė statusas T sritis fizika atitikmenys: angl. visible radiation vok. sichtbare Strahlung, f rus. видимое излучение, n; излучение в видимой области, n pranc. rayonnement visible, m … Fizikos terminų žodynas

видимое излучение — regimoji spinduliuotė statusas T sritis Energetika apibrėžtis Regimąjį pojūtį sukeliančios šviesos bangos, kurių ilgiai yra nuo 0,380 μm iki 0,780 μm. atitikmenys: angl. visible radiation vok. sichtbare Strahlung, f rus. видимое излучение, n… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

видимое излучение — [visible radiation] излучение (1.), воспринимаемое глазом, т.е. в диапазоне X = 0,4 0,8 мкм; Смотри также: Излучение эффективное излучение тепловое излучение собственное излучение … Энциклопедический словарь по металлургии

ВИДИМОЕ ИЗЛУЧЕНИЕ — с в е т, оптическое излучение с длинами волн (в вакууме) от 380 400 нм до 760 780 нм, к рое способно непосредственно вызывать зрительное ощущение … Большой энциклопедический политехнический словарь

Видимое излучение — оптическое излучение с длинами волн 380 780 нм, способное вызывать зрительное ощущение у человека … Астрономический словарь

видимое излучение — Оптическое излучение, длины волн которого расположены в диапазоне от 380 до 770 ммк, которое может восприниматьс человеческим глазом … Политехнический терминологический толковый словарь

Источник

Видимое излучение

Белый свет , разделённый призмой на цвета спектра

Ви́димое излуче́ние — электромагнитные волны, воспринимаемые человеческим глазом [1] . Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны ( частоты ) излучения, при этом максимум чувствительности приходится на 555 нм (540 Т Гц ), в зелёной части спектра [2] . Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380—400 нм (790—750 Т Гц ), а в качестве длинноволновой — 760—780 нм (395—385 ТГц) [1] [3] . Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова).

Не всем цветам, которые различает человеческий глаз , соответствует какое-либо монохроматическое излучение. Такие оттенки, как розовый, бежевый или пурпурный образуются только в результате смешения нескольких монохроматических излучений с различными длинами волн.

Видимое излучение также попадает в « оптическое окно », область спектра электромагнитного излучения, практически не поглощаемого земной атмосферой . Чистый воздух рассеивает синий свет существенно сильнее, чем свет с бо́льшими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящее в видимый диапазон. Например, пчёлы и многие другие насекомые видят свет в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300—400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете [4] [5] .

Содержание

  • 1 История
  • 2 Характеристики границ видимого излучения
  • 3 Спектр видимого излучения
  • 4 См. также
  • 5 Примечания

История [ ]

Круг цветов Ньютона из книги «Оптика» ( 1704 ), показывающий взаимосвязь между цветами и музыкальными нотами. Цвета спектра от красного до фиолетового разделены нотами, начиная с ре (D). Круг составляет полную октаву . Ньютон расположил красный и фиолетовый концы спектра друг рядом с другом, подчёркивая, что из смешения красного и фиолетового цветов образуется пурпурный.

Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах [6] [7] .

Ньютон первый использовал слово спектр ( Шаблон:Lang-lat — видение, появление) в печати в 1671 году , описывая свои оптические опыты. Он сделал наблюдение, что, когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся с различной скоростью в прозрачной среде. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный, оранжевый, жёлтый, зелёный , голубой , индиго и фиолетовый. Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели [6] [8] . Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Гёте , в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму на краях луча проявляются красно-желтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если приблизить эти края достаточно близко друг к другу.

Длины волн, соответствующие различным цветам видимого излучения были впервые представлены 12 ноября 1801 года в Шаблон:Не переведено 5 Томасом Юнгом , они получены путём перевода в длины волн параметров колец Ньютона , измеренных самим Исааком Ньютоном. Эти кольца Ньютон получал пропусканием через линзу, лежащую на ровной поверхности, соответствующей нужному цвету части разложенного призмой в спектр света, повторяя эксперимент для каждого из цветов [9] Шаблон:Rp . Юнг оформил полученные длины волн в виде таблицы, выразив во французских дюймах (1 дюйм=27,07 мм ) [10] , будучи переведёнными в нанометры , их значения неплохо соответствуют современным, принятым для различных цветов. В 1821 году Йозеф Фраунгофер положил начало измерению длин волн спектральных линий , получив их от видимого излучения Солнца с помощью дифракционной решётки , измерив углы дифракции теодолитом и переведя в длины волн [11] . Как и Юнг, он выразил их во французских дюймах, переведённые в нанометры, они отличаются от современных на единицы [9] Шаблон:Rp . Таким образом, ещё в начале XIX века стало возможным измерять длины волн видимого излучения с точностью до нескольких нанометров.

Читайте также:  Угол обзора видеокамер таблицы

В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.

В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз использует три различных вида рецепторов.

Характеристики границ видимого излучения [ ]

Длина волны, нм 380 780
Энергия фотонов, Дж 5,23 Шаблон:E 2,55 Шаблон:E
Энергия фотонов, эВ 3,26 1,59
Частота, Гц 7,89 Шаблон:E 3,84 Шаблон:E
Волновое число , см −1 1,65 Шаблон:E 0,81 Шаблон:E

Спектр видимого излучения [ ]

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разными углами. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены с помощью света одной длины волны (точнее, с очень узким диапазоном длин волн), называются спектральными цветами [12] . Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице [13] :

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый ≤450 ≥667 ≥2,75
Синий 450—480 625—667 2,58—2,75
Сине-зелёный 480—510 588—625 2,43—2,58
Зелёный 510—550 545—588 2,25—2,43
Желто-зелёный 550—570 526—545 2,17—2,25
Жёлтый 570—590 508—526 2,10—2,17
Оранжевый 590—630 476—508 1,97—2,10
Красный ≥630 ≤476 ≤1,97

Указанные в таблице границы диапазонов носят условный характер, в действительности же цвета плавно переходят друг в друга, и расположение видимых наблюдателем границ между ними в большой степени зависит от условий наблюдения [13] .

Источник



Область спектра длина волны таблица

Электромагнитный спектр условно делится на диапазоны. В результате их рассмотрения необходимо знать следующее.

  • Название диапазонов электромагнитных волн.
  • Порядок их следования.
  • Границы диапазонов в длинах волн или частотах.
  • Чем обусловлено поглощение или излучение волн того или иного диапазона.
  • Использование каждого типа электромагнитных волн.
  • Источники излучения различных электромагнитных волн (естественные и искусственные).
  • Опасность каждого вида волн.
  • Примеры объектов, имеющих размеры, сравнимые с длиной волны соответствующего диапазона.
  • Понятие об излучении абсолютно черного тела.
  • Солнечное излучение и окна прозрачности атмосферы.

Диапазоны электромагнитных волн

Диапазон Дополнительное деление Длины волн Иное
Микроволновый 1 мм — 30 см
Инфракрасный (ИК) дальний (субмиллиметровый) 10 – 1000 мкм 50 – 2000 мкм
средний 1 – 10 мкм 5 – 30 мкм
2,5 – 50 мкм
ближний 0,73 – 1 мкм 0,73 – 5 мкм
0,74 – 2,5 мкм
Видимый 0,38 – 0,73 мкм
Ультрафиолетовый (УФ) ближний 200 – 380 нм
вакуумный 100 – 200 нм
жесткий 10 – 100 нм
Рентгеновский мягкий 0,1 – 20 нм
жесткий 0,01 – 0,1 нм
Гамма 2 . При этом 527 Вт приходится на ИК излучение, 445 Вт на видимый диапазон и 32 Вт есть УФ излучение. Баланс между поглощенной и излученной электромагнитной энергией имеет критическое значение для климата Земли.

На рисунке – солнечное излучение при входе в атмосферу (желтый цвет) и на поверхности Земли (красный цвет). Для сравнения приведена кривая излучения абсолютно черного тела с температурой, которая максимально приближает кривую к спектру излучения солнца. Видно, что на некоторых длинах волн излучение не дотигает поверхности Земли, а поглощается атмосферными молекулярными газами.

Большинство лазеров, к примеру, ND:YAG, многие волоконные и большинство мощных диодных лазеров, излучают в ближнем ИК диапазоне. Относительно небольшое число лазеров излучает в средней и длинноволновой части ИК диапазона. Например, CO2 лазер излучает в районе 10,6 мкм и 9,6 мкм и на некоторых других длинах волн в этой области. Лазеры на свободных электронах позволяют получить очень мощное, перестраиваемое в широких пределах, инфракрасное излучение. ИК излучение может быть также получено за счет преобразования частоты в нелинейных кристаллах.

Инфракрасные волны используются в телекоммуникациях (0,75 – 1,8 мкм), для обработки материалов (резка, “сверление” и т.д.) (1 – 10 мкм), термографии (0,9 – 14 мкм), для дистанционного управления бытовой техникой (телевизоры, видео магнитофоны), в физиотерапии для прогрева травмированных участков тела, для связи на коротких дистанциях, в приборах ночного видения, в чувствительных к теплу детекторах боеголовок снарядов и ракет (3 – 5 мкм), в охранных системах домов, устройствах ночного видения, спектроскопии.

Видимый диапазон

Один из наиболее важных для человека диапазонов, связанных с возможностью видеть окружающий мир. Он занимает сравнительно небольшой участок электромагнитного спектра 380 – 730 нм.

Они

  • Легко проходят атмосферу.
  • Единственные эдектромагнитные волны, которые могут быть обнаружены человеческим глазом.
  • Поглощаются за счет возбуждения электронов в молекулах и атомах, межзонных переходов в полупроводниках.
  • Естественные источники: солнце, молнии. Искусственные: лампы накаливания, газоразрядные лампы, светодиоды, лазеры на красителях, газовые ионные, твердотельные и полупроводниковые лазеры.
  • Имеют неизмеримое количество приложений.

Волны с разной длиной имеют свой цвет. Цветовая гамма состоит из бесконечного количества цветовых оттенков, но принято именовать 7 основных цветов. Красный (625—740), оранжевый (590—625), желтый (565—590), зеленый (500—565), голубой (485—500), синий (440—485), фиолетовый (380—440).

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380—440 680—790 2,82—3,26
Синий 440—485 620—680 2,56—2,82
Голубой 485—500 600—620 2,48—2,56
Зелёный 500—565 530—600 2,19—2,48
Жёлтый 565—590 510—530 2,10—2,19
Оранжевый 590—625 480—510 1,98—2,10
Красный 625—740 400—480 1,68—1,98

Среди лазеров и источников с их применением, излучающих в видимом диапазоне, можно назвать следующие: первый запущенный лазер, — рубиновый, с длиной волны 694,3 нм, диодные лазеры, к примеру на основе GaInP и AlGaInP для красного диапазона, и на основе GaN для синего диапазона, титан-сапфировый лазер, He-Ne лазер, лазеры на ионах аргона и криптона, лазер на парах меди, лазеры на красителях, лазеры с удвоением или суммированием частоты в нелинейных средах, рамановские лаэеры. (https://www.rp-photonics.com/visible_lasers.html?s=ak).

Долгое время существовала проблема в создании компактных лазеров в сине-зеленой части спектра. Имелись газовые лазеры, такие как аргоновый ионный лазер (с 1964 года), у которого две основные линии генерации лежат в синей и зеленой части спектра (488 и 514 нм) или гелий кадмиевый лазер. Однако для многих приложений они не годились из-за своей громоздкости и ограниченного количества линий генерации. Создать полупроводниковые лазеры с широкой запрещенной зоной не удавалось из-за огромных технологических трудностей. Однако в конечном итоге были разработаны эффективные методы удвоения и утроения частоты твердотельных лазеров ИК и оптического диапазона в нелинейных кристаллах, полупроводниковые лазеры на основе двойных соединений GaN и лазеров с повышением частоты накачки (upconversion lasers).

Источники света в сине зеленой области позволяют увеличить плотность записи на CD-ROM, качество репрографии, необходимы для создания полноцветных проекторов, для осуществления связи с подводными лодками, для снятия рельефа морского дна, для лазерного охлаждения отдельных атомов и ионов, для контроля за осаждением из газа (vapor deposition), в проточной цитометрии. (взято из “Compact blue-green lasers” by W. P. Risk et al).

Ультрафиолетовый диапазон

Считается, что ультрафиолетовый диапазон занимает область от 10 до 380 нм. Хотя границы его четко не определены, особенно в коротковолновой области. Он делится на поддиапазоны и это деление также не является однозначным, так как в разных источниках привязано к различным физическим и биологическим процессам.

Так на сайте «Health Physics Society» ультрафиолетовый диапазон определен в границах 40 — 400 нм и делится на пять поддиапазонов: вакуумный УФ (40-190 нм), дальний УФ (190-220 нм), UVC (220-290 нм), UVB (290-320 нм), и UVA (320-400 нм) (черный свет). В англоязычной версии статьи об ультрафиолете в Википедии «Ultraviolet» под ультрафиолетовое излучение выделяется диапазон 40 — 400 нм, однако в таблице в тексте представляется его деление на кучу перекрывающихся поддиапазонов, начиная с 10 нм. В русскоязычной версии Википедии «Ультрафиолетовое излучение» с самого начала границы УФ диапазона устанавливаются в пределах 10 — 400нм. Кроме того в Википедии для диапазонов UVC, UVB и UVA указаны области 100 – 280, 280 – 315, 315 – 400 нм.

Ультрафиолетовое излучение несмотря на свое благотворное влияние в небольших количествах на биологические объекты является одновременно самым опасным из всех других естественных широкораспространенных излучений других диапазонов.

Основным естественным источником УФ излучения является Солнце. Однако не все излучение достигает Земли, так как поглощается озоновым слоем стратосферы и в области короче 200 нм очень сильно атмосферным кислородом.

UVC практически полностью поглощается атмосферой и не достигает земной поверхности. Этот диапазон используется бактерицидными лампами. Чрезмерная экспозиция приводит к повреждению роговицы и снежной слепоте, а также к тяжелым ожогам лица.

UVB наиболее разрушительная часть УФ излучения, так как она имеет достаточно энергии для повреждения ДНК. Она не полностью поглощается атмосферой (проходит около 2%). Это излучение необходимо для выработки (синтеза) витамина D, однако вредное влияние могут повлечь ожоги, катаракту и рак кожи. Эта часть излучения поглощается озоном атмосферы, снижение концентрации которого вызывает беспокойство.

UVA практически полностью достигает Земли (99%). Оно ответственно за загар, но чрезмерность приводит к ожогам. Как и UVB оно необходимо для синтеза витамина D. Облучение сверх меры приводит к подавлению иммунной системы, жесткости кожи и образованию катаракты. Излучение в этом диапазоне называют еще черным светом. Насекомые и птицы способны видеть этот свет.

На рисунке ниже для примера показана зависимость концентрации озона по высоте на северных широтах (желтая кривая) и уровень блокирования озоном солнечного ультрафиолета. UVC полностью поглощается до высот в 35 км. В то же время UVA почти полностью достигает поверхности Земли, однако это излучение практически не представляет какой-либо опасности. Озон задерживает большую часть UVB, однако некоторая его часть достигает Земли. В случае истощения озонового слоя большая часть будет облучать поверхность и приводить к генетическому повреждению живых существ.

Краткий список использования электромагнитных волн УФ диапазона.

  • Фотолитография высокого качеста для изготовления электронных устройств таких, как микропроцессоры и микросхем памяти.
  • При изготовлении оптоволоконных элементов, в частности брэгговских решеток.
  • Обеззараживание от микробов продуктов, воды, воздуха, предметов (UVC).
  • Черный свет (UVA) в криминалистике, в экспертизе произведений искусства, в установлении подлинности банкнот (явление флуоресценции).
  • Искусственный загар.
  • Лазерная гравировка.
  • Дерматология.
  • Стоматология (фотополимеризация пломб).

Рукотворными источниками ультрафиолетового излучения являются:

Немонохроматические: Ртутные газоразрядные лампы различных давлений и конструкций.

Монохроматические:

  1. Лазерные диоды, в основном на базе GaN, (небольшой мощности), генерирующие в ближнем ультрафиолетовом диапазоне;
  2. Эксимерные лазеры являются очень мощными источниками ультрафиолетового излучения. Они излучают наносекундные (пикосекундные и микросекундные) импульсы со средней мощностью от нескольких ватт до сотен ватт. Типичные длины волн лежат между 157 нм (F2) до 351 нм (XeF);
  3. Некоторые твердотельные лазеры, легированные церием, такие как Ce3+:LiCAF или Ce3+:LiLuF4, которые работают в импульсном режиме с наносекундными импульсами;
  4. Некоторые оптоволоконные лазеры, к примеру, легированные неодимом;
  5. Некоторые лазеры на красителях способны излучать ультрафиолет;
  6. Ионный аргоновый лазер, который, несмотря на то, что основные линии лежат в оптическом диапазоне, может генерировать непрерывное излучение с длинами волн 334 и 351 нм, но с меньшей мощностью;
  7. Азотный лазер, излучающий на длине волны 337 нм. Очень простой и дешевый лазер, работает в импульсном режиме с наносекундной длительностью импульсов и с пиковой мощностью несколько мегаватт;
  8. Утроенние частоты Nd:YAG лазера в нелинейных кристаллах;

Источник

Область спектра длина волны таблица

Таблицы для качественного спектрографического анализа

Последовательность появления линий в спектрах элементов в угольной дуге
при испарении пробы из канала анода (ряды летучести А. К. Русанова)

Примечания . В скобки взяты элементы, близкие по условиям поступления в плазму дуги.

Элементы, отмеченные звездочкой, поступают в плазму дуги вместе с летучими составными частями пробы в виде хорошо испаряемых оксидов или сульфидов; после восстановления указанных соединений образовавшиеся металлы и карбиды поступают в плазму дуги совместно с малолетучими составными частями пробы. Поэтому спектральные линии элементов, отмеченных звездочкой, появляются в дуге одновременно с линиями, расположенными как в правой, так и в левой частях рядов.

Линии фосфора при испарении фосфатов всегда появляются в первые моменты после зажигания дуги.

Последовательное появление линий фосфора и других элементов особенно отчетливо проявляется при испарении фосфатов тех элементов, которыми заканчивается ряд V.

При испарении фосфатов, в состав которых входят элементы, расположенные в средней части ряда V, разделение линии фосфора и этих элементов проявляется менее отчетливо. Линии элементов, составляющих начало ряда V, появляются одновременно с линиями фосфора.

При вдувании руд воздухом в дугу элементы поступают в плазму дуги в последовательности, определяемой рядами VIII и IX.

Характерные группы линий спектра железа и «полосатого» спектра угольной

Источник

Adblock
detector