Меню

Области длин волн отвечающие спектральным цветам

Длины световых волн

Свет играет важную роль в фотографии. Привычный всем солнечный свет имеет достаточно сложный спектральный состав.

Спектральный состав видимой части солнечного света характеризуется наличием монохроматических излучений, длина волны которых находится в пределах 400-720 нм, по другим данным 380-780 нм.

Иными словами солнечный свет может быть разложен на монохроматические составляющие. В тоже время монохроматические (или одноцветные) составляющие дневного света не могут быть выделены однозначно, а, ввиду непрерывности спектра, плавно переходят от одного цвета в другой.

Считается, что определённые цвета находятся в определённых пределах длин волн. Это иллюстрирует Таблица 1.

Длины световых волн

Название цвета

Длина волны, нм

Для фотографов представляет определённый интерес распределение длин волн по зонам спектра.

Всего выделяют три зоны спектра: Синюю (Blue), Зелёную (Green) и Красную (Red).

По первым буквам английских слов Red (красный), Green (зелёный), Blue (синий) получила название система представления цвета – RGB.

В RGB-системе работает множество устройств, связанных графической информацией, например, цифровые фотокамеры, дисплеи и т.п.

Длины волн монохроматических излучений, распределённых по зонам спектра, представлены в Таблице 2.

При работе с таблицами важно учесть непрерывный характер спектра. Именно непрерывный характер спектра приводит к расхождению, как ширины спектра видимого излучения, так и положение границ спектральных цветов.

Длины волн монохроматических излучений, распределённых по зонам спектра

Обозначение

Зона видимого спектра

Спектральные цвета

Длина волны, нм

Длина волны, нм

Сине-фиолетовый
Синий
Сине-зелёный

400-430
430-480
480-500

380-440
440-485
485-500

Зелёный
Жёлто-зелёный
Жёлтый

500-540
540-560
560-580

500-540
540-565
565-590

Что касается монохроматических цветов, то разные исследователи выделяют разное их количество! Принято считать от шести до восьми различных цветов спектра.

Шесть цветов спектра

Монохроматические цвета спектра

Длина волны, нм

При выделении семи цветов спектра предлагается из диапазона синего 436-495 нм см.Таблицу 3 выделить две составляющие, одна из которых имеет синий (440-485 нм), другая – голубой (485-500 нм) цвет.

Семь цветов спектра

Монохроматические цвета спектра

Источник

Области длин волн, отвечающие спектральным цветам

Спектральные цвета — это цвета, которые которые по зрительному ощущению человека трансформируются в видимый человеческим глазом свет, который имеет определённую длину волны. Эти цвета можно интерпретировать, как узкие участки непрерывного спектра видимого светового излучения.

Человеческий глаз воспринимает не спектрально-чистые цвета, а цвета, которые формируются при отражении или пропускании различными материалами солнечного света, который имеет практически непрерывный спектр. В итоге в глазу появляется ощущение, обусловленное спектрами сложной формы, при восприятии которых воздействие света разных частот объединяется. Пучки света при этом сопровождаются спектральными кривыми разной формы при попадании на сетчатку могут восприниматься как имеющие одинаковый цвет из-за одинаковых уровней стимуляции рецепторов, но есть одно важное замечание: никакие смешанные цвета не совпадают со спектральными. Следовательно, спектральные цвета являются «крайними», то есть каждый из них имеет максимально возможную насыщенность в пределах цветового тона, который он имеет.

Спектральные цвета

Длина волны, нм.
УФ ─ 390 Ф ─ 435 С ─ 495 З ─ 570 Ж ─ 590 О ─ 630 К ─ 770 ИК
  • УФ — ультрафиолетовый;
  • Ф — фиолетовый;
  • С — синий;
  • 3 — зеле­ный;
  • Ж — желтый;
  • О — оранжевый;
  • К — красный;
  • ИК — инфра­красный
Читайте также:  Дочка или сын таблица

Хроматическая диаграмма CIE XYZ в хроматических координатах xy.

Хроматическая диаграмма CIE XYZ в хроматических координатах xy.

Криволинейный участок соответствует области спектральных цветов; прямая определяет пурпурные оттенки — неспектральные.

Источник



Спектр цветов таблица физика

Цвет — качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего физиологического зрительного ощущения и зависящая от ряда физических, физиологических и психологических факторов. Индивидуальное восприятие цвета определяется его спектральным составом, а также цветовым и яркостным контрастом c окружающими источниками света, а также несветящимися объектами. Очень важны такие явления, как метамерия, особенности человеческого глаза и психики. ( Источник)

Цвета делятся на спектральные и неспектральные, хроматические и ахроматические.

Спектр и спектральные цвета.

В 1671 году сэр Исаак Ньютон с помощью трёхгранной призмы разложил белый солнечный свет на цветовой спектр. Подобный спектр содержал все цвета за исключением пурпурного.

Ньютон ставил свой опыт следующим образом ( см. рисунок ниже):

Солнечный свет пропускался через узкую щель и падал на призму. В призме луч белого цвета расслаивался на отдельные спектральные цвета. Разложенный таким образом он направлялся затем на экран, где возникало изображение спектра. Непрерывная цветная лента начиналась с красного цвета и через оранжевый, жёлтый, зеленый, синий кончалась фиолетовым. Если это изображение затем пропускалось через собирающую линзу, то соединение всех цветов вновь давало белый цвет. Эти цвета получаются из солнечного луча с помощью преломления. Существуют и другие физические пути образования, например, связанные с процессами интерференции, дифракции, поляризации и флуоресценции.

Если мы разделим спектр на две части, например — на красно-оранжево-жёлтую и зелёно-сине-фиолетовую, и соберём каждую из этих групп специальной линзой, то в результате получим два смешанных цвета, смесь которых в свою очередь также даст нам белый цвет. Два цвета, объединение которых даёт белый цвет, называются дополнительными цветами. Если мы удалим из спектра один цвет, например, зелёный, и посредством линзы соберём оставшиеся цвета — красный, оранжевый, жёлтый, синий и фиолетовый, — то полученный нами смешанный цвет окажется красным, то есть цветом дополнительным по отношению к удалённому нами зелёному. Если мы удалим жёлтый цвет, — то оставшиеся цвета — красный, оранжевый, зелёный, синий и фиолетовый — дадут нам фиолетовый цвет, то есть цвет, дополнительный к жёлтому. Каждый цвет является дополнительным по отношению к смеси всех остальных цветов спектра. В смешанном цвете мы не можем увидеть отдельные его составляющие. В этом отношении глаз отличается от музыкального уха, которое может выделить любой из звуков аккорда. Различные цвета создаются световыми волнами, которые представляют собой определённый род электромагнитной энергии.
Человеческий глаз может воспринимать свет только при длине волн от 380 до 740 миллимикрон:

1 микрон или 1 m = 1/1000 мм = 1/1 000000 м. 1 миллимикрон или 1 MIT) =1/1 000 000 мм.

Длина волн, соответствующая отдельным цветам спектра, и соответствующие частоты (число колебаний в секунду) для каждого призматического цвета имеют следующие характеристики:

Отношение частот красного и фиолетового цвета приблизительно равно 1:2, то есть такое же как в музыкальной октаве.

Каждый цвет спектра характеризуется своей длиной волны, то есть он может быть совершенно точно задан длиной волны или частотой колебаний.

Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн человеческим глазом и мозгом.

Читайте также:  Все категории и подкатегории водительских прав с расшифровкой

Остается исследовать важный вопрос о корпусном цвете предметов. Если мы, например, поставим фильтр, пропускающий красный цвет, и фильтр, пропускающий зелёный, перед дуговой лампой, то оба фильтра вместе дадут чёрный цвет или темноту. Красный цвет поглощает все лучи спектра, кроме лучей в том интервале, который отвечает красному цвету, а зелёный фильтр задерживает все цвета, кроме зелёного. Таким образом, не пропускается ни один луч, и мы получаем темноту. Поглощаемые в физическом эксперименте цвета называются также вычитаемыми.

Цвет предметов возникает, главным образом, в процессе поглощения волн. Красный сосуд выглядит красным потому, что он поглощает все остальные цвета светового луча и отражает только красный. Когда мы говорим: «эта чашка красная», то мы на самом деле имеем в виду, что молекулярный состав поверхности чашки таков, что он поглощает все световые лучи, кроме красных. Чашка сама по себе не имеет никакого цвета, цвет создаётся при её освещении. Если красная бумага (поверхность, поглощающая все лучи кроме красного) освещается зелёным светом, то бумага покажется нам чёрной, потому что зелёный цвет не содержит лучей, отвечающих красному цвету, которые могли быть отражены нашей бумагой.

Все живописные краски являются пигментными или вещественными. Это впитывающие (поглощающие) краски, и при их смешивании следует руководствоваться правилами вычитания. Когда дополнительные краски или комбинации, содержащие три основных цвета — жёлтый, красный и синий — смешиваются в определённой пропорции, то результатом будет чёрный, в то время как аналогичная смесь невещественных цветов, полученных в ньютоновском эксперименте с призмой дает в результате белый цвет, поскольку здесь объединение цветов базируется на принципе сложения, а не вычитания. ( Источник)

Таблица, характеризующая физические характеристики спектральных цветов:

Спектральные цвета — цвета, которым по зрительному ощущению человека можно поставить в соответствие видимый свет, имеющий определённую длину волны. Их можно интерпретировать, как узкие (вплоть до монохроматичности) участки непрерывного спектра видимого светового излучения. ( Источник)

Что такое непрерывный спектр?

Белый свет разлагается призмой на спектральные цвета (спектр): красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Это распределение «главных» цветов было предложено Ньютоном по аналогии со звуковой гаммой. Между отдельными цветами происходят непрерывные переходы тонов. Красный свет отклоняется меньше всего, фиолетовый имеет наибольший угол отклонения. При помощи цилиндрической линзы можно снова соединить спектральные цвета в белый свет (рис.216). Следовательно, белый цвет является смесью множества цветных лучей спектра.

Если ввести в сходящийся пучок лучей позади цилиндрической линзы вторую (тонкую призму, то она отклонит часть лучей и на экране появится окрашенное изображение щели, например светло-голубое; неотклонённые лучи дадут второе изображение щели (оранжевое). Эти два пучка лучей дадут совместно белый цвет. Такого рода цвета: красный и зеленый, оранжевый и светло-голубой, желтый и синий называют дополнительными цветами.

Замечание. Желтый и синий спектральные цвета дают совместно белый; но соединение желтой и синей красок дает зеленый цвет. В последнем случае речь идет об отраженном свете. Желтая краска отражает главным образом оранжевый, желтый и зеленый. Синяя отражает, наоборот, зеленый и синий. В смеси преобладает отраженный зеленый цвет.

Одинаковые призмы из разных сортов стекла дают спектры различной ширины. Комбинируя призмы с различными преломляющими углами, можно уменьшить отклонение и одновременно увеличить ширину спектра (спектроскоп прямого зрения). Комбинируя призмы из флинтгласа и кронгласа с различными преломляющими углами, можно, наоборот, устранить разложение в спектр и сохранить отклонение — ахроматические призмы. (Источник)

Читайте также:  Технология обработки данных в электронных таблицах

На диаграмме ниже все спектральные цвета заключены внутри кривой линии, прямая линия, соединяющая фиолетовый и красный — это линия пурпурных цветов, которые относятся к неспектральным.

Таким образом, спектральные цвета — это реальные цвета, а неспектральные — это воображаемые цвета, которые находятся за пределами данной кривой и образуются посредством произвольного смешения спектральных и ахроматических цветов.

В следующий раз рассмотрим подробнее спектральные цвета, какие цвета являются первичными ( основными) и дополнительными, что такое аддитивное и субтрактивное смешивание ( воспроизведение) цвета, что такое цветовой круг и какое практическое значение он имеет при подборе одежды. Основные определeния основных и дополнительных цветов и видов смешивания даны выше, но нужны иллюстрации и более детальное рассмотрение.

  • Current Mood: bored

Источник

История и методология химии

Текст. Физика света и цвета.

Физика света и цвета

С понятием «цвет» мы обычно связываем понятие «свет». Эти два явления действительно неразрывно связаны, поскольку если бы вещество не поглощало и не отражало свет, то увидеть его цвет было бы невозможно.

Обычный «белый» свет – это набор электромагнитных волн, длины которых лежат в диапазоне от 380 до 780 нанометров. Излучения с длиной волны более 780 нм называют инфракрасными, а с длиной волны менее 380 нм — ультрафиолетовыми. С тех пор как Исаак Ньютон впервые разложил видимый свет на цветные составляющие, в диапазоне «белого» света принято выделять семь интервалов, каждый из которых воспринимается, как «чистый» цвет ( красный, оранжевый , желтый , зелёный , голубой , синий , фиолетовый ). В 1671 году И. Ньютон впервые употребил слово спектр для описания цветных составляющих видимого света (Рис.1).

опыты со светом

Рис.1. Опыты Ньютона со светом

Практика художников наглядно показывала, что очень многие цвета и оттенки можно получить смешением небольшого количества красок. Стремление натурфилософов найти «первоосновы» всего на свете, анализируя явления природы, всё разложить «на элементы», привело к выделению «основных цветов», которые невозможно получить за счет смешения красок.

В Англии основными цветами долго считали красный, жёлтый и синий, эта же система используется в практике художников и в настоящее время. В 1860 г. Максвелл ввел систему RGB (красный, зелёный, синий). Эта система в настоящее время преобладает в системах цветовоспроизведения для электронно-лучевых трубок мониторов компьютеров и телевизоров.

Наличие двух систем связано с тем, что при смешении красок, в отличие от смешения лучей, светлота и насыщенность полученного цвета получается несколько иной, поэтому получить жёлтый, самый светлый цвет смешением других красок — невозможно, а вот за счет наложения электромагнитных излучений, эта задача выполнима (Рис. 2).

максвеллА краскиБ

Рис.2. Аддитивное смешение цветов в системе Максвелла (А), смешение основных цветов в художественной практике (Б).

В 1905 году А. Эйнштейн показал, что свет имеет двойственную природу, т.е. представляет собой электромагнитное излучение, но в тоже время и поток особых частиц – фотонов. Фотоны, составляющие разные цветовые пучки, обладают различной энергией. Наименьшей энергией обладают фотоны красных световых лучей, а наибольшей – фотоны фиолетового излучения (Табл.1).

Диапазон энергий фотонов для излучений видимого спектра

Источник

Adblock
detector