Меню

Общие научные принципы химического производства на примере промышленного получения аммиака серной кислоты метанола

Общие научные принципы химического производства (на примере промышленного получения аммиака, серной кислоты, метанола)

химическое производство

Промышленное получение серной кислоты

производство серной кислоты

1) 4FeS2 + 11O2 → 2Fe2O3 + 8SO2

Измельчённый очищенный влажный пирит (серный колчедан) сверху засыпают в печь для обжига в «кипящем слое«. Снизу (принцип противотока) пропускают воздух, обогащённый кислородом.
Из печи выходит печной газ, состав которого: SO2, O2, пары воды (пирит был влажный) и мельчайшие частицы огарка (оксида железа). Газ очищают от примесей твёрдых частиц (в циклоне и электрофильтре) и паров воды (в сушильной башне).
В контактном аппарате происходит окисление сернистого газа с использованием катализатора V 2 O 5 ( пятиокись ванадия) для увеличения скорости реакции. Процесс окисления одного оксида в другой является обратимым. Поэтому подбирают оптимальные условия протекания прямой реакции — повышенное давление (т.к прямая реакция идет с уменьшением общего объема) и температура не выше 500 С ( т.к реакция экзотермическая).

В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой.
Поглощение водой не используют, т.к оксид серы растворяется в воде с выделением большого количества теплоты, поэтому образующаяся серная кислота закипает и превращается в пар. Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3

Промышленное получение аммиака

производство аммиака

Предварительно получают азотоводородную смесь. Водород получают конверсией метана (из природного газа):

Азот получают из жидкого воздуха.

В турбокомпрессоре происходит сжатие смеси до необходимого давления 25·10 6 Па. В колонне синтеза газы реагируют при 450—500 °С в присутствии катализатора (пористое железо с примесями Al2O3 и K2O) :
N2 + 3H2 ↔ 2NH3 + 92 кДж (выход 10—20% аммиака)

Образующийся аммиак отделяют от непрореагировавших азота и водорода сжижением в холодильнике, возвращая непрореагировавшую азотоводородную смесь в колонну синтеза.
Процесс непрерывный, циркуляционный.

Применение: производство азотных удобрений, взрывчатых веществ, пластических масс и др.

Производство метилового спирта

производство метанола

До промышленного освоения каталитического способа получения метанол получали при сухой перегонке дерева (отсюда его название «древесный спирт»). В данное время этот способ имеет второстепенное значение.

Современный способ:

Сырье: синтез-газ — смесь оксида углерода (II) с водородом (1:2).

Вспомогательные материалы: катализаторы (ZnO и CuO).

Основной химический процесс: синтез-газ при температуре 250 °С и давлении 7 МПа превращается каталитически в метанол:

СО + 2Н2 ↔ СНзОН + Q

Особенности технологического процесса: при прохождении газовой смеси через слой катализатора образуется 10—15% метанола, который конденсируют, а непрореагировавшую смесь смешивают со свежей порцией синтез — газа и после нагревания снова направляют в слой катализатора (циркуляция). Общий выход — 85%.

Условия проведения синтеза метанола и аммиака при среднем давлении сходны, а сырье (природный газ) общее для обоих процессов. Поэтому чаще всего производства метанола и аммиака объединяют (азотно-туковые заводы).

Источник

Химия и производство серной кислоты и аммиака

Урок 46. Химия 11 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам в личном кабинете

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно его приобрести.

Получите невероятные возможности

Конспект урока «Химия и производство серной кислоты и аммиака»

Производство серной кислоты контактным способом осуществляется из серосодержащих руд. На геофизической карте эти руды имеют соответствующее обозначение.

Самыми яркими примерами серосодержащих руд являются самородная сера, цинковая обманка, киноварь, свинцовый блеск, лимонит, пирит, или серный колчедан.

Самой распространённой рудой, из которой получают серную кислоту, является пирит, или серный колчедан. Добываемую руду доставляют на завод, где руда измельчается и подаётся на ленточный транспортёр, а затем сверху в печь для обжига пирита.

В печи температура достигает восьмисот градусов по цэльсию. Для того, чтобы мелкие частицы оставались в подвешенном состоянии, снизу нагнетается кислородо-воздушная смесь. Находясь в подвешенном состоянии, слой из мелких частиц напоминает кипящую жидкость, поэтому его и называют «кипящий слой». Реакция сгорания пирита является экзотэрмической, в результате образуется оксид серы четыре.

Отвод избыточного тепла осуществляется с помощью воды, циркулирующей по трубам вокруг печи. Забирая лишнее тепло от установки, вода переходит в пар. Образующийся в ходе сгорания руды огарок содержит оксиды железа и отправляется на завод для производства железа, а газообразная смесь, включающая сернистый газ поступает в следующий аппарат.

Сернистый газ после печи называют «печным (обжиговым) газом». Эта смесь содержит сернистый газ, крупные примеси, мелкие примеси и пары воды. Затем сернистый газ нужно очистить, чтобы удалить крупные примеси. Для этого используют аппарат циклон.

Читайте также:  Хронический пиелонефрит симптомы и лечение

Попадая в него, газовая смесь начинает двигаться по спирали сверху вниз. Крупные частицы примесей отбрасываются к стенке и падают вниз.

Для удаления наиболее мелких пылинок, газовая смесь направляется в другой аппарат – электрофильтр.

В этом аппарате находятся металлические сетки, между которыми протянута мелкая проволока, к которой подведён постоянный электрический ток высокого напряжения. Мелкие пылинки притягиваются к сетке и падают в специальный бункер.

От водяных паров газовую смесь очищают в сушильной башне.

В эту башню газовая смесь поступает снизу. А сверху противотоком протекает концентрированная серная кислота. Для увеличения поверхности соприкосновения газа и жидкости башню заполняют керамическими кольцами.

Следующая фазаэто процесс окисления сернистого газа до серного ангидрида.

Эта реакция является экзотэрмической, обратимой и идёт в присутствии катализатора – оксида ванадия пять.

Осуществляется данный процесс в контактном аппарате. Сернистый газ в процессе очистки охлаждается, поэтому в контактном аппарате его подогревают, пропуская через теплообменник.

В роли подогревателя выступает газовая смесь, выходящая из контактного аппарата. Её пропускают по трубам теплообменника. А между ними в противоположном направлении пропускают сернистый газ.

Таким образом, достигается одновременно две цели: исходные вещества нагреваются, а продукты реакции охлаждаются до нужных температур. В контактном аппарате находятся полки, в которых слоями располагается катализатор – оксид ванадия пять, спрессованный в форме трубок. Охлаждённый в теплообменнике серный ангидрид направляется в поглотительную башню.

В поглотительной башне идёт процесс образования серной кислоты.

Оксид серы шесть в башне поглощается концентрированной серной кислотой, то есть серный ангидрид вступает в реакцию с водой, содержащейся в этой серной кислоте. Получается безводная серная кислота, в которой дополнительно растворим серный ангидрид, получается так называемый олеум.

Получение серной кислоты контактным способомнепрерывный процесс. Образующийся таким образом олеум отправляется на склад.

Серная кислота применяется для производства минеральных удобрений, взрывчатых веществ, при травлении металлов, серную кислоту используют для получения минеральных кислот, органических красителей, химических волокон, при очистке нефтепродуктов и масел.

Рассмотрим производство аммиака.

В промышленности синтез аммиака осуществляют из азота и водорода. Высокая эффективность и мощность производства во многом зависит от применения катализаторов на всех стадиях производства.

В процессе производства аммиака используют воду, природный газ, атмосферный воздух. Азот для производства аммиака берут из воздуха, в котором около семидесяти восьми процентов его по объёму, а водород берут из природного газа.

Азото-водородная смесь последовательно очищается от примесей и поступает в четырёхступенчатый компрэссор. Синтез аммиака идёт под давлением триста атмосфер.

Из компрэссора азото-водородная смесь через сепаратор и теплообменник поступает в колонну синтеза, где расположен катализатор.

Катализаторэто: оксид железа два, оксид железа три, оксид алюминия, оксид калия, оксид кремния четыре.

Азото-водородная смесь нагревается выходящим из колонны газом и последовательно проходит в слои катализатора, где идёт образование аммиака.

Аммиак используется для получения минеральных удобрений, гербицидов, азотной кислоты, азотсодержащих органических веществ.

Таким образом, производство серной кислоты осуществляется контактным способом из серосодержащих руд. В промышленности аммиак получают синтезом азота и водорода. Серная кислота и аммиак находят широкое применение во многих областях народного хозяйства.

Источник



Технология хим. производства аммиака и серной кислоты.

Современный процесс получения аммиака

Работа современного аммиачного завода очень сложна. Это утверждение кажется удивительным, если «ориентироваться» только лишь на достаточно просто выглядящее уравнение реакции (1), являющееся основой синтеза аммиака. Однако утверждение о сложности промышленного синтеза аммиака не покажется чрезмерным уже после первого ознакомления со схемой действия аммиачного завода, работающего на природном газе (рис.1). Первая стадия в процессе синтеза аммиака включает десульфуратор. Десульфуратор — техническое устройство по удалению серы из природного газа. Это совершенно необходимая стадия, поскольку сера представляет собой каталитический яд и «отравляет» никелевый катализатор на последующей стадии получения водорода.

Вторая стадия промышленного синтеза аммиака предполагает конверсию метана (промышленное получение водорода). Конверсия метана — это обратимая реакция, протекающая при 700 – 800 оС и давлении 30 – 40 атм с помощью никелевого катализатора при смешивании метана с парами воды:

СН4 + Н2О ↔ СО + 3Н2 (2)

Образовавшийся по данной реакции водород, казалось бы, уже можно использовать для синтеза аммиака по реакции (1) — для этого необходимо запустить в реактор воздух содержащий азот. Так и поступают на стадии (3), однако на этой стадии происходят другие процессы.

Читайте также:  Калькулятор подбора диска по типоразмеру шин

Происходит частичное сгорание водорода в кислороде воздуха:

2Н2 + О2 = Н2О(пар)

В результате на этой стадии получается смесь водяного пара, оксида углерода (II) и азота. Водяной пар, в свою очередь, восстанавливается снова с образованием водорода, как на второй стадии поторой стадии по им образом, после первых трёх стадий имеется смесь водорода, азота и «нежелательного» оксида углерода (II).

На рис.1 стадия (4) обозначена как реакция «сдвига», но проходить она может при двух температурных режимах и разных катализаторах. Окисление

СО, образующегося на двух предыдущих стадиях, до СО2 проводят именно по этой реакции:

СО + Н2О(пар) ↔ СО2 + Н2 (3)

Процесс «сдвига» проводят последовательно в двух «ректорах сдвига». В первом из них используется катализатор Fe3О4 и процесс проходит при достаточно высокой температуре порядка 400 оС. Во втором процессе используется более эффективный медный катализатор и процесс удаётся провести при более низкой температуре.

На пятой степени оксид углерода (IV) «вымывают» из газовой смеси при помощи поглощения щелочным раствором:

КОН + СО2 = К2СО3.

Реакция «сдвига» (3) обратимая и после 4-й стадии в газовой смеси на самом деле остаётся ещё ≈ 0,5% СО. Этого количества СО вполне достаточно, чтобы загубить железный катализатор на главной стадии синтеза аммиака(1). На 6-й стадии оксид углерода (II) удаляют реакцией конверсии водородом в метан на специальном никелевом катализаторе при температурах 300 – 400 оС:

СО + 3Н2 ↔ СН4 +Н2О

Газовую смесь, которая теперь содержит ≈ 75% водорода и 25% азота, подвергают сжатию; давление её при этом возрастает от 25 – 30 до 200 – 250 атм. В соответствии с уравнением Клайперона-Менделеева такое сжатие приводит к очень резкому повышению температуры смеси. Сразу же после сжатия приходиться охлаждать до 350 – 450 оС. Именно этот процесс и описывается с точностью реакцией (1).

Краткое описание современных промышленных способов получения серной кислоты. Пути совершенствования и перспективы развития производства.

Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

где I – стадия получения печного газа (оксида серы (IV)),

Источник

4.2.2.1 Общие научные принципы химического производства (на примере промышленного получения аммиака, серной кислоты, метанола).

Производство аммиака

производство аммиака установка

Промышленный синтез аммиака основан на прямом взаимодействии простых веществ — азота N2 и водорода H2. Азот, используемый при производстве аммиака, получают фракционной перегонкой жидкого воздуха, а водород – паровой конверсией угля или природного газа:

паровая конверсия угля и метана уравнения

Рассмотрим уравнение взаимодействия азота с водородом:

взаимодействие азота с водородом уравнение

Данная реакция является каталитической, т.е. ее скорость многократно возрастает в присутствии катализатора. В качестве катализатора синтеза аммиака из азот-водородной смеси используют катализатор на основе пористого железа.

Поскольку реакция взаимодействия азота с водородом является экзотермической, то для смещения равновесия в сторону образования аммиака процесс целесообразно проводить при низких температурах. Однако без нагревания скорость реакции взаимодействия азота с водородом ничтожно мала, поэтому для синтеза аммиака при выборе температурных условий приходится ориентироваться на «золотую середину». Такой «золотой серединой» является температура около 400-500 о С.

Негативным следствием использования высокой температуры является то, что равновесие реакции сильно смещается в сторону обратной реакции – разложения аммиака, вследствие чего падает его выход.

Согласно уравнению взаимодействия азота и водорода, при протекании реакции суммарное количество газообразных веществ уменьшается, ведь при взаимодействии 3 моль водорода и 1 моль азота (всего 4 моль) взамен образуется только 2 моль аммиака. Поэтому, исходя из принципа Ле Шателье, негативные эффекты, связанные с разложением аммиака, можно снизить, осуществляя процесс под высоким давлением. Давление азот-водородной смеси в колонне синтеза создается с помощью турбокомпрессора и составляет около 300 атм. Тем не менее, даже несмотря на использование колоссального давления, степень превращения азот-водородной смеси «за один заход» не превышает 20 %. Дальнейшее повышение давления по ряду причин невозможно, поэтому проблема низкого выхода решается довольно простым способом. Образовавшийся аммиак отделяется в сепараторе от непрореагировавшей азот-водородной смеси, а оставшаяся смесь направляется с помощью циркуляционного компрессора обратно в колонну синтеза вместе с новой порцией сырья. Такой прием носит название принципа циркуляции. Благодаря принципу циркуляции степень превращения азот-водородной смеси в аммиак удается повысить до 95%.

Производство серной кислоты

В качестве серосодержащего сырья для производства серной кислоты могут быть использованы сера или сероводород (побочные продукты нефтепереработки), минерал пирит FeS2, а также сульфиды некоторых других d-элементов. Никакие другие виды сырья не используются.

Читайте также:  Использование таблиц и фреймов

В настоящий момент основным сырьем для производства серной кислоты являются сероводород и сера, поскольку они в огромных количествах образуются в качестве побочных продуктов нефтепереработки.

Однако же в школьной программе пока еще по-прежнему считается, что серная кислота производится преимущественно из пирита, в связи с чем и мы будем рассматривать основные стадии производства серной кислоты именно этого же сырья.

Первая стадия

Заключается в сжигании предварительно измельченного пирита в токе обогащенного кислородом воздуха. Процесс протекает в соответствии с уравнением:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2 + Q

Обжиг осуществляют при температуре около 800 о С в печи для обжига. В процессе обжига используют так называемый метод кипящего слоя – частицы измельченного пирита подаются в печь сверху, а воздух — снизу. В результате этого раскаленные частицы пирита оказываются подвешенными в токе воздуха, внешне напоминая кипящую жидкость.

После обжига пирита полученный печной газ, содержащий диоксид серы, отделяется от твердых примесей огарка (Fe2O3) с помощью циклона. Циклоном называют аппарат, в котором происходит грубая очистка печных газов за счет центробежной силы от наиболее крупных твердых частиц. Далее после грубой очистки смесь газов проходит более глубокую очистку уже от оставшихся мелких твердых частиц с помощью электрофильтра. Принцип действия электрофильтра основан на том, что к наэлектризованным металлическим пластинам прилипает пыль, которая после скопления ссыпается с них под собственным весом в приемник.

После очистки от твердых примесей печной газ направляется в нижнюю часть так называемой сушильной башни, в верхнюю часть которой впрыскивается концентрированная серная кислота на встречу газу. При таком варианте осуществления фактически сталкиваются два потока — смеси газов, идущей снизу, и струи жидкой концентрированной серной кислоты, текущей сверху. Очевидно, что в результате этого достигается максимальная степень «смешения» газа с осушающей жидкостью. Данный прием носит название принципа противотока.

Вторая стадия

2SO2 + O2 = 2SO3 + Q

После очистки от твердых примесей и осушки концентрированной серной кислотой газы поступают в контактный аппарат. В контактном аппарате расположены полки с катализатором V2O5, который катализирует взаимодействие диоксида серы с кислородом в соответствии с уравнением:

Аналогично реакции взаимодействия азота с водородом, рассмотренной выше, данная реакция также является каталитической, экзотермической и протекает с уменьшением количества газообразных веществ. Поэтому с точки зрения принципа Ле Шателье ее следовало бы проводить при низких температурах. Однако при низких температурах скорость реакции крайне низка, и ее осуществляют при оптимальной температуре около 400-500 о С. Смещения равновесия реакции в сторону разложения SO3 при повышении температуры удается практически полностью избежать, проводя реакцию при повышенном давлении.

Третья стадия (заключительная)

После второй стадии образовавшийся триоксид серы поступает в часть установки, называемую поглотительной башней.

Из названия данного аппарата логичным было бы предположить, что триоксид серы в нем поглощается в этой части установки водой, ведь триоксид серы, взаимодействуя с водой, образует серную кислоту. Однако в реальности серный ангидрид SO3 поглощают не водой (. ), а концентрированной серной кислотой. Связано это с тем, что при смешении серного ангидрида с водой выделяется колоссальное количество теплоты, в результате чего сильно возрастают температура, давление и образуются мельчайшие капли трудноуловимого сернокислотного тумана.

В результате поглощения SO3 концентрированной серной кислотой фактически образуется раствор SO3 в безводной серной кислоте, который называют олеумом. Далее образующийся олеум собирается в металлические емкости и отправляется на склад. Серную кислоту необходимой концентрации получают, добавляя к олеуму воду в нужной пропорции. В результате добавления воды избыток SO3 превращается в серную кислоту.

Производство метанола

Производство метанола основано на реакции взаимодействия угарного газа CO с водородом H2, которая протекает в соответствии с уравнением:

CO + 2H2 = CH3OH + Q

Технологическая цепочка производства метанола практически идентична таковой для получения аммиака. Это обусловлено определенным сходством реакций. Так, например, реакции образования аммиака и метанола являются экзотермическими, обратимыми, каталитическими и протекают с уменьшением объема газообразных веществ.

В синтезе метанола из угарного газа и водорода используются все те же приемы, что и в синтезе аммиака из азот-водородной смеси, в частности:

  1. наличие катализатора в колонне синтеза;
  2. принцип теплообмена;
  3. использование высокого давления для повышения выхода продукта;
  4. использование высокой температуры для увеличения скорости реакции;
  5. принцип циркуляции.

Источник