Меню

Определение средней и мгновенной скорости движения тела Основные формулы кинематики

Кинематика все формулы и определения таблица

Кинематика 1

Механическое движение – изменение положения тела относительно других тел с течением времени. Способы описания: словесный, табличный, графический, формулами.

Материальная точка – тело, собственными размерами которого в данных условиях можно пренебречь.

Кинематика 2

Траектория – линия, которую описывает материальная точка при своём движении в пространстве. По виду траектории все движения делятся на прямолинейные и криволинейные.

Система отсчёта – часы и система координат, связанные с условно выбираемым телом отсчёта (наблюдателем).

Кинематика 3

Относительность движения – различие скорости, направления и траектории движения в различных системах отсчёта.

Перемещение – вектор, проведённый из начального положения материальной точки в её конечное положение.

Кинематика 4

Типы движений

1. Равномерное движение

1.1. Равномерное прямолинейное движение

Равномерное движение – движение тела, при котором за равные интервалы времени оно преодолевает равные части пути.

Скорость равномерного движения равна отношению пройденного пути к интервалу времени, за который этот путь пройден.

Скорость равномерного прямолинейного движения равна отношению перемещения к интервалу времени его совершения.

Уравнение равно-прямолинейного движения x = x o + υ ox t показывает, что координата линейно зависит от времени.

Мгновенная скорость равна отношению перемещения к бесконечно малому интервалу времени, за который оно произошло.

1.2 Равномерное движение по окружности (равномерное вращение)

Равномерное движение по окружности — это движение, при котором материальная точка за равные промежутки времени проходит равные по длине дуги окружности.

Равномерное движение тела по окружности — это частный и наиболее простой случай криволинейного движения. Хотя при таком движении модуль скорости остается постоянным, это движение с ускорением, которое является следствием изменения направления вектора скорости.

Кинематика 5

2. Движение с постоянным ускорением

Равноускоренное движение – движение, при котором мгновенная скорость за любые равные интервалы времени меняется одинаково.

Мгновенное ускорение равно отношению изменения мгновенной скорости тела к бесконечно малому интервалу времени, за который это изменение произошло.

Ускорение равноускоренного движения равно отношению изменения мгновенной скорости тела к интервалу времени, за который это изменение произошло.

Уравнение равноускоренного движения y = yo + υoyt + ½ay показывает, что координата квадратично зависит от времени. Уравнение υy = υoy + ay t показывает, что скорость линейно зависит от времени.

Центростремительное ускорение – ускорение, всегда направленное к центру окружности при равномерном движении по ней материальной точки. Модуль центростремительного ускорения равен отношению квадрата модуля скорости равномерного движения по окружности к её радиусу.

Источник

Основные понятия кинематики

Кинематика − это раздел механики, который рассматривает движение тел без объяснения вызывающих его причин.

Механическое движение тела − это изменение положения данного тела в пространстве относительно других тел во времени.

Как мы сказали, механическое движение тела относительно. Движение одного и того же тела относительно разных тел может быть разным.

Для характеристики движения тела указывается, по отношению к какому из тел рассматривается это движение. Это будет тело отсчета.

Система отсчета − система координат, которая связана с телом отсчета и временем для отсчета. Она позволяет определить положение передвигающегося тела в любой отрезок времени.

В С И единицей длины выступает метр, а единицей времени – секунда.

У каждого тела есть определенные размеры. Разные части тела расположены в разных пространственных местах. Но в большинстве задач механики не нужно указывать положение отдельных частей тела. Если размеры тела маленькие в сравнении с расстояниями до остальных тел, тогда заданное тело считается его материальной точкой. Таким образом поступают при изучении перемещения планет вокруг Солнца.

Механическое движение называют поступательным, в случае если все части тела перемещаются одинаково.

Поступательное движение наблюдается у кабин в аттракционе «Колесо обозрения» или у автомобиля на прямолинейном участке пути.

При поступательном движении тела его также рассматривают в качестве материальной точки.

Материальная точка − это тело, размерами которого при заданных условиях можно пренебречь.

Материальная точка в механике

Термин “материальная точка” имеет важное значение в механике.

Траектория движения тела − некоторая линия, которую тело или материальная точка описывает, перемещаясь во времени от одной точки до другой.

Местонахождение материальной точки в пространстве в любой временной отрезок (закон движения) определяют, используя зависимость координат от времени x = x ( t ) , y = y ( t ) , z = z ( t ) или зависимость от времени радиус-вектора r → = r → ( t ) , проведенного от начала координат до заданной точки. Наглядно это представлено на рисунке 1 . 1 . 1 .

Рисунок 1 . 1 . 1 . Определение положения точки при помощи координат x = x ( t ) , y = y ( t ) и z = z ( t ) и радиус-вектора r → ( t ) , r 0 → – радиус-вектор положения точки в начальный момент времени.

Перемещение тела s → = ∆ r → = r → — r 0 → – это направленный отрезок прямой, который соединяет начальное положение тела с его дальнейшим положением. Перемещение является векторной величиной.

Пройденный путь l равняется длине дуги траектории, преодоленной телом за определенное время t . Путь является скалярной величиной.

Если движение тела рассматривается в течение довольно короткого отрезка времени, тогда вектор перемещения оказывается направленным по касательной к траектории в заданной точке, а его длина равняется преодоленному пути.

В случае небольшого промежутка времени Δ t преодоленный телом путь Δ l практически совпадает с модулем вектора перемещения ∆ s → . При перемещении тела по криволинейной траектории модуль вектора движения все время меньше пройденного пути (рисунок 1 . 1 . 2 ).

Рисунок 1 . 1 . 2 . Пройденный путь l и вектор перемещения ∆ s → при криволинейном движении тела.
a и b – это начальная и конечная точки пути.

Определение средней и мгновенной скорости движения тела. Основные формулы кинематики

Для описания движения в физике введено понятие средней скорости: υ → = ∆ s → ∆ t = ∆ r → ∆ t .

Физиков больше интересует формула не средней, а мгновенной скорости, которая рассчитывается как предел, к которому стремится средняя скорость на бесконечно маленьком промежутке времени Δ t , то есть υ → = ∆ s → ∆ t = ∆ r → ∆ t ; ∆ t → 0 .

В математике данный предел называется производная и обозначается d r → d t или r → ˙ .

Мгновенная скорость υ → тела в каждой точке криволинейной траектории направлена по касательной к траектории в заданной точке. Отличие между средней и мгновенной скоростями демонстрирует рисунок 1 . 1 . 3 .

Рисунок 1 . 1 . 3 . Средняя и мгновенная скорости. ∆ s 1 → , ∆ s 2 → , ∆ s 3 → – перемещения за время ∆ t 1 ∆ t 2 ∆ t 3 соответственно. При t → 0 , υ → с р → υ → .

Читайте также:  Типы данных для хранения даты и времени

При перемещении тела по криволинейной траектории скорость υ → меняется по модулю и по направлению. Изменение вектора скорости υ → за какой-то маленький промежуток времени Δ t задается при помощи вектора ∆ υ → (рисунок 1 . 1 . 4 ).

Вектор изменения скорости ∆ υ → = υ 2 → — υ 1 → за короткий промежуток времени Δ t раскладывается на 2 составляющие: ∆ υ r → , которая направлена вдоль вектора υ → (касательная составляющая) и ∆ υ n → , которая направлена перпендикулярно вектору υ → (нормальная составляющая).

Рисунок 1 . 1 . 4 . Изменение вектора скорости по величине и по направлению. ∆ υ → = ∆ υ → r + ∆ υ → n – изменение вектора скорости за промежуток времени Δ t .

Мгновенное ускорение тела a → – это предел отношения небольшого изменения скорости ∆ υ → к короткому отрезку времени Δ t , в течение которого изменялась скорость: a → = ∆ υ → ∆ t = ∆ υ → τ ∆ t + ∆ υ → n ∆ t ; ( ∆ t → 0 ) .

Направление вектора ускорения a → , при криволинейном движении, не совпадает с направлением вектора скорости υ → . Составляющие вектора ускорения a → – это касательные (тангенциальные) a → τ и нормальные a → n ускорения (рисунок 1 . 1 . 5 ).

Рисунок 1 . 1 . 5 . Касательное и нормальное ускорения.

Касательное ускорение показывает, как быстро меняется скорость тела по модулю: a τ = ∆ υ ∆ t ; ∆ t → 0 .

Вектор a → τ направлен по касательной к траектории.

Нормальное ускорение показывает, как быстро скорость тела меняется по направлению.

Представим криволинейное движение, как движение по дугам окружностей (рисунок 1 . 1 . 6 ).

Рисунок 1 . 1 . 6 . Движение по дугам окружностей.

Нормальное ускорение находится в зависимости от модуля скорости υ и радиуса R окружности, по дуге которой тело перемещается в определенный момент времени: a n = υ 2 R .

Вектор a n → все время направлен к центру окружности.

По рисунку 1 . 1 . 5 видно, модуль полного ускорения равен a = a τ 2 + a n 2 .

Итак, основные физические величины в кинематике материальной точки – это пройденный путь l , перемещение s → , скорость υ → и ускорение a → .

Путь l – скалярная величина.

Перемещение s → , скорость υ → и ускорение a → – векторные величины.

Для того чтобы задать какую-нибудь векторную величину, необходимо задать ее модуль и определить направление. Вектора подчиняются математическим правилам: их можно проектировать на координатные оси, складывать, вычитать и др.

Источник



Кинематика Основные понятия, законы и формулы

Основные понятия, законы и формулы.

Кинематика — раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих движение.

Механическим движением называют изменение положения тела в пространстве с течением времени относительно других тел.

Простейшим механическим движением является движение материальной точки — тела, размеры и форму которого можно не учитывать при описании его движения.

Движение материальной точки характеризуют траекторией, длиной пути, перемещением, скоростью и ускорением.

Траекторией называют линию в пространстве, описываемую точкой при своем движении.

Расстояние, пройденное телом вдоль траектории движения, — путь(S).

Перемещение — направленный отрезок, соединяющий начальное и конечное положение тела.

Длина пути — величина скалярная, перемещение — величина векторная.

Средняя скорость — это физическая величена, равная отношению вектора перемещения к промежутку времени, за которое произошло перемещение:

Мгновенная скорость или скорость в данной точке траектории — это физическая величина, равная пределу, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Dt:

Величину характеризующую изменение скорости за единицу времени, называют средним ускорением :

Аналогично понятию мгновенной скорости вводится понятие мгновенного ускорения :

При равноускоренном движении ускорение постоянно.

Простейший вид механического движения-прямолинейное движение точки с постоянным ускорением.

Движение с постоянным ускорением называется равнопеременным; в этом случае:

Частным случаем прямолинейного движения с постоянным ускорением является падение тел с небольшой высоты (много меньшей радиуса Земли).

Простейшим видом криволинейного движения является равномерное движение точки по окружности:

Связь между линейными и угловыми величинами при вращательном движении:

Любое сложное движение можно рассматривать как результат сложения простых движений. Результирующее перемещение равно геометрической сумме и находится по правилу сложения векторов. Скорость тела и скорость системы отсчета так же складывается векторно.

При решении задач на те или иные разделы курса, кроме общих правил решения, приходится учитывать некоторые дополнения к ним, связанные со спецификой самих разделов.

Задачи по кинематике, разбираемые в курсе элементарной физики, включают в себя: задачи о равнопеременном прямолинейном движении одной или нескольких точек, задачи о криволинейном движении точки на плоскости. Мы рассмотрим каждый из этих типов задач отдельно.

Прочитав условие задачи, нужно сделать схематический чертеж, на котором следует изобразить систему отсчета, и указать траекторию движения точки.

После того как выполнен чертеж, с помощью формул:

устанавливают связь между величинами, отмеченными на чертеже.

Cоставив полную систему кинематических уравнений, описывающих движение точки, нужно записать в виде вспомогательных уравнений все дополнительные условия задачи.

Проверив число неизвестных в полученной системе уравнений, можно приступать к ее решению относительно искомых величин.

Решение задач о движении одних тел относительно других, которые в свою очередь двигаются относительно тела, принятого за неподвижное (чаще всего его связывают с Землей), начинают с выбора системы отсчета.

Для этого необходимо тщательно продумать условие задачи и выяснить, к какой системе относятся заданные и искомые характеристики движения.

Затем нужно установить подвижную и неподвижную системы отсчета, для движущихся тел указать кинематические характеристики относительного и переносного движений и составить уравнения движения отдельно для подвижной и неподвижной систем отсчета.

Составляя эти уравнения, необходимо следить за тем, чтобы начало отсчета времени было одинаковым для всех движущихся тел. Связь между абсолютным, переносным и относительным движениями задается формулами:

Подстановкой в них развёрнутых выражений для Sn, S0, vn, v0 и т. д. и заканчивается первая часть решения.

Пример 1. Велосипедист ехал из одного города в другой. Половину пути он проехал со скоростью v1 = 12 км/ч далее половину оставшегося времени он ехал со скоростью v2 = 6 км/ч, а затем до конца пути шел пешком со скоростью v3 = 4 км/ч. Определить среднюю скорость велосипедиста на всем пути.

а) Эта задача на равномерное прямолинейное движение одного тела. Представляем ввиде схемы. При составлении ее изображаем траекторию движения и выбираем на ней начало отсчета (точка 0). Весь путь разбиваем на три отрезка S1,S2, S3, на каждом из них указываем скорости v1, v2, v3 и отмечаем время движения t1, t2, t3.

Читайте также:  Как выбрать циркуляционный насос

S = S1 + S2 + S3, t = t1 + t2 + t3.

б) Составляем уравнения движения для каждого отрезка пути:

S1 = v1t1; S2 = v2t2; S3 = v3t3 и записываем дополнительные условия задачи:

S1 = S2 + S3; t2 = t3; .

в) Читаем еще раз условие задачи, выписываем числовые значения известных величин и, определив число неизвестных в полученной системе уравнений (их 7: S1, S2, S3, t1, t2, t3, vср), решаем ее относительно искомой величины vср.

Если при решении задачи полностью учтены все условия, но в составленных уравнениях число неизвестных получается больше числа уравнений, это означает, что при последующих вычислениях одно из неизвестных сократится, такой случай имеет место и в данной задаче.

Решение системы относительно средней скорости дает:

г) Подставив числовые значения в расчётную формулу, получим:

Напоминаем, что числовые значения удобнее подставлять в окончательную расчетную формулу, минуя все промежуточные. Это экономит время на решение задачи и предотвращает дополнительные ошибки в расчётах.

Решая задачи на движение тел, брошенных вертикально вверх, нужно обратить особое внимание на следующее. Уравнения скорости и перемещения для тела, брошенного вертикально вверх, дают общую зависимость v и h от t для всего времени движения тела. Они справедливы (со знаком минус) не только для замедленного подъема вверх, но и для дальнейшего равноускоренного падения тела, поскольку движение тела после мгновенной остановки в верхней точке траектории происходит с прежним ускоронием. Под h при этом всегда подразумевают перемещение движущейся точки по вертикали, то есть ее координату в данный момент времени — расстояние от начала отсчета движения до точки.

Если тело брошено вертикально вверх со скоростью V0, то время tпод и высота hmax его подъема равны :

Кроме того, время падения этого тела в исходную точку равно времени подъема на максимальную высоту (tпад = tпод), а скорость падения равна начальной скорости бросания (vпад = v0).

Пример 2. Тело брошено вертикально вверх с начальной скоростью v0 = 3,13 м/с. Когда оно достигло верхней точки полета, из того же начального пункта с такой же начальной скоростью бросили второе тело. Определите, на каком расстоянии от точки бросания встретятся тела; сопротивление воздуха не учитывать.

Решение. Делаем чертеж. Отмечаем на нем траекторию движения первого и второго тела. Выбрав начало отсчета в точке, указываем начальную скорость тел v0, высоту h, на которой произошла встреча (координату y=h), и время t1 и t2 движения каждого тела до момента встречи.

Уравнение перемещения тела, брошенного вверх, позволяет найти координату движущегося тела для любого момента времени независимо от того, поднимается ли тело вверх или падает после подъема вниз, поэтому для первого тела

Третье уравнение составляем, исходя из условия, что второе тело бросили позднее первого на время максимального подъема:

Решая систему трех уравнений относительно h, получаем:

б) В задачах на криволинейное движение точки можно выделить задачи о движении точки по окружности и задачи о движении тел, брошенных под углом к горизонту.

Решение задач о движении точки по окружности принципиально ничем не отличается от решения задач о прямолинейном движении. Особенность состоит лишь в том, что здесь наряду с общими формулами кинематики приходится учитывать связь между угловыми и линейными характеристиками движения.

Движение тел, брошенных под углом к горизонту, можно рассматривать как результат наложения двух одновременных прямолинейных движений по осям OX и ОУ, направленных вдоль поверхности Земли и по нормали к ней. Учитывая это, решение всех задач такого типа удобно начинать с разложения вектора скорости и ускорения по указанным осям и затем составлять кинематические уравнения движения для каждого направления. Необходимо при этом иметь ввиду, что тело, брошенное под углом к горизонту, при отсутствии сопротивления воздуха и небольшой начальной скорости летит по параболе, и время движения по оси ОХ равно времени движения по оси ОУ, поскольку оба эти движения происходят одновременно.

Пример 3. Артиллерийское орудие расположено на горе высотой h. Снаряд вылетает из ствола со скоростью v0, направленной под углом a к горизонту. Пренебрегая сопротивлением воздуха, определите:

а) дальность полета снаряда по горизонтальному направлению ;

б) скорость снаряда в момент падения ;

г)начальный угол стрельбы, при котором дальность полета наибольшая.

Прямоугольную систему координат выбираем так, чтобы ее начало совпало с точкой бросания, а оси были направлены вдоль поверхности Земли и по нормали к ней в сторону начального смещения снаряда. Изображаем траекторию снаряда, его начальную скорость , угол бросания a, высоту h, горизонтальное перемещение S, скорость в момент падения (она направлена по касательной к траектории в точке падения) и угол падения j (углом падения тела называют угол между касательной к траектории, проведенной в точку падения, и нормалью к поверхности Земли).

Движение тела, брошенного под углом к горизонту, можно представить как результат сложения двух прямолинейных движений: одного-вдоль поверхности Земли (оно будет равномерным, поскольку сопротивление воздуха не учитывается) и второго-перпендикулярно поверхности Земли (в данном случае это будет движение тела, брошенного вертикально вверх). Для замены сложного движения двумя простыми разложим (по правилу параллелограмма) скорости и на горизонтальные и вертикальные составляющие и найдем их проекций и — для скорости и vx и vy — для скорости .

а, б) Составляем уравнение скорости и перемещения для их проекций по каждому направлению. Так как в горизонтальном направлении снаряд летит равномерно, то его скорость и координаты в любой момент времени удовлетворяют уравнениям

Для вертикального направления:

В момент времени t1, когда снаряд упадет на землю, его координаты равны:

В последнем уравнении перемещение h взято со знаком «минус», так как за время движения снаряд сместится относительно уровня отсчета 0 высоты в сторону противоположную направлению, принятому за положительное.

Результирующая скорость в момент падения равна :

В составленной системе уравнений пять неизвестных, нам нужно определить S и v.

Читайте также:  Предписанный и достигаемый социальный статус

Из уравнений (4) и (5) находим время полета снаряда :

Подставляя выражения для t1 формулы (2) и (3) с учетом (5), соответственно получаем:

После этого из (6) с учетом (1) и (8) находим:

Из полученных результатов можно сделать следующие выводы.

Если h = 0, то есть снаряды падают на уровне вылета, то согласно формуле (7) дальность их полета будет равна :

Если при этом угол бросания равен 45град (sin 2a = 1), то при заданной начальной скорости v0 дальность полета наибольшая:

Подставив в выражение (9) значение h = 0, получим, что скорость снаряда в момент его полета к уровню, с которого был произведен выстрел, равна его начальной скорости: v = v0.

При отсутствии сопротивления воздуха, скрость падения тел равна начальной скорости бросания независимо от того, под каким углом было брошено тело, лишь бы точки бросания и падения находились на одном уровне. Учитывая, что горизонтальная составляющая скорости с течением времени не изменяется, легко установить, что в момент падения скорость тела образует с горизонтом такой же угол, как и в момент бросания.

д) Решая уровнения (2), (4) и (5) относительно начального угла бросания a получим:

Поскольку угол бросания не может быть мнимым, то это выражение имеет физический смысл лишь при условии, что

откуда следует, что максимальное перемещение снаряда по горизонтальному направлению равно:

Подставляя выражение для S = Smax в формулу (10), получим для угла a, при котором дальность полета наибольшая:

Источник

Все формулы по Кинематике!

Основы кинематики — краткий курс.

Кинематика — это раздел механики, отвечающий на вопрос «Как движутся тела?».

Механическое движение и его виды

Механическое движение — это изменение положение тела в пространстве относительно других тел с течением времени.

Движение тела, при котором все его точки движутся одинаково, называют поступательным движением. Тело, размерами которого в условиях данной задачи можно пренебречь, называют материальной точкой.

Траектория

Траектория — это линия, вдоль которой движется тело.
Длина траектории — путь, который прошло тело, двигаясь из точки 1 к точке 2. Вектор, соединяющий начало и конец траектории, называют перемещением тела.

Система отсчета

система отсчета

Системой отсчета называют совокупность тела отсчета, связанной с ним системы координат и прибора для исчисления времени. Всякое движение, а также покой является относительным. Координата тела в любой момент времени определяется уравнением:

x = x 0 + S х = x 0 + v х Δt

Скорость

Средней скоростью v ср материальной точки за промежуток времени Δ t называют отношение изменения координаты тела (Δ х = х – х 0 ) к промежутку времени (Δ t = t – t 0 ), в течение которого это изменение произошло: формыла средней скоростиМгновенной скоростью материальной точки называют скорость в данный момент времени или в данной точке траектории.
Мгновенная скорость прямолинейного движения материальной точки равна производной от координаты этой точки по времени: Формула мгновенной скорости

Закон сложения скоростей

Скорость тела в неподвижной системе отсчета вектора v равна векторной сумме скоростей тела относительно подвижной системы вектора v 1 и скорости подвижной системы относительно неподвижной:

Закон сложения скоростей

Закон сложения перемещений

Перемещение тела в неподвижной системе отсчета вектора S равно векторной сумме перемещений тела относительно подвижной системы вектора S 1 и перемещения подвижной системы относительно неподвижной:

Закон сложения перемещений

Прямолинейное равномерное движение

Прямолинейным равномерным движением называется движение, при котором материальная точка (тело) за любые одинаковые промежутки времени совершает одинаковые перемещения. Векторная величина, которая определяется отношением перемещения вектора S тела к промежутку времени Δ t , за который данное перемещение было совершено, называется скоростью:

Прямолинейное равномерное движение

Перемещение тела

При прямолинейном движении перемещение тела S х вдоль оси O x : S х = x – х 0 .

перемещение тела

Координата тела

Координата тела в любой момент времени определяется уравнением: где x 0 — начальная координата тела, S х — перемещение тела вдоль оси O х , v x — проекция скорости тела на ось Ох:

координата тела

Графики зависимости кинематических величин от времени
для прямолинейного равномерного движения

зависимость от времени

График зависимости от времени проекции
перемещения: s х (t) = v х Δ t

зависимостть от времени координаты

График зависимости от времени координаты:
x(t) = x 0 + s х = x 0 + v х Δ t.
а — движение тела совпадает с направлением
оси O x ;
б — движение тела в противоположном
направлении

зависимость от времени проекции скорости

График зависимости от времени проекции
скорости: v х = const (константа).
а — движение тела совпадает с направлением
оси O x ;
б — движение тела в противоположном
направлении.

график 4

При прямолинейном равномерном движении
на графике зависимости от времени
проекции скорости путь численно равен
площади прямоугольника, ограниченного
сверху линией модуля скорости v х = const ,
а снизу — осью времени в промежутках
интервала движения.

Неравномерное движение

Прямолинейное равноускоренное движение

Движение материальной точки, во время которого его скорость за любые одинаковые промежутки времени изменяется на одну и ту же величину, называется равнопеременным (равноускоренным)

Источник

Формулы кинематики.

Кинематика – раздел теоретической механики, в котором изучается механическое движение тел без учета их масс и причин, обеспечивающих это движение. Основные формулы кинематики представлены в таблице ниже.

Скорость

Скорость — это векторная физическая величина, определяется как отношение пройденного телом пути к единице времени.

Ускорение

Ускорение — это величина, которая характеризует быстроту изменения скорости.

Нормальное ускорение

Нормальное ускорение — характеризует изменение скорости по направлению.

Касательное ускорение

Касательное ускорение — это составляющая ускорения, направленная по касательной к траектории.

Классический закон сложения скоростей

Классический закон сложения скоростей определяет связь между значениями скорости материальной точки по отношению к различным системам отсчёта, движущимся друг относительно друга.

Равномерное прямолинейное движение

Равномерное прямолинейное движение — это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения.

Равноускоренное прямолинейное движение

Равноускоренное прямолинейное движение — это движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково.

Свободное падение тел

Свободное падение тел — это падение тел на Землю в вакууме при отсутствии помех.

Равномерное движение по окружности

Равномерное движение по окружности — при таком движении модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости.

Движение по окружности

Движение по окружности — при таком движении модуль ускорения остается неизменным, но направление вектора ускорения изменяется со временем.

an – центростремительное ускорение.

Источник