Меню

Оптимальная концентрация кислорода

Аэрация водоема

Аэрация водоема — это насыщения воды воздухом, то есть кислородом. Является важной и необходимой для жизнедеятельности всех обитателей водоема, в том числе и водных растений. Аэрация оказывает благоприятное воздействие на рыб и их активность, способствует установлению необходимого экологического баланса в водоеме. Также обеспечение аэрации в водоеме можно назвать выгодным вложением в его развитие.

Проводить аэрацию пруда требуется беспрерывно, на протяжении всего года. При наличии пруда и разведении в нем рыбы рекомендуется приобрести аэрационное оборудование и насыщать его кислородом. Поскольку нехватка растворенного кислорода в воде, его низкое содержание, может привести к гибели рыбы и развитию различных заболеваний в пруду. Дефицит кислорода является причиной плохого клева. Это относится как к зимнему, так и летнему сезону. Таким образом, все усилия, направленные на организацию рыбалки, не будут оправданными.

Известно о негативном воздействии на поведение рыб освещенности, силы и направления ветра, перепадов атмосферного давления. Однако при недостаточном содержании в воде растворенного кислорода можно с уверенностью сказать, что хорошего клева не будет.

Аэрация в летнее время

Проведение аэрации в летний сезон способствует насыщению кислородом более глубоких слоев воды в водоеме. В результате начинают активизироваться процессы азотного цикла, которые благоприятно воздействуют на обитателей, населяющих водоем.

Наряду с насыщением воды кислородом при процессе аэрации происходит и перемешивание воды, находящейся в разных глубинах водоема. Холодные нижние слои воды переходят наверх и смешиваются с теплыми слоями воды. В итоге температура воды в водоеме стабилизируется, то есть приобретает одинаковое значение на разной глубине пруда.

Аэрация в осенний сезон

В осенние месяцы проведение работ по аэрации водоема способствует процессу его самоочищения и своеобразной его подготовке к нормальной зимовке. Дело в том, что повышение концентрации кислорода в воде поддерживает деятельность гетеротрофных и нитрифицирующих бактерий, которые принимают участие в процессе переработки различных органических отходов в водоеме. Данные отходы, в свою очередь, преобразовываются в воду, азот и углекислый газ, которые являются безопасными для водоема и всех его обитателей.

Аэрация зимой и весной

В зимнее время аэрационные работы очищают воду от вредных газов, накапливающихся под ледяным покрытием и оказывающих серьезное отрицательное воздействие на кислородный режим водоема.

В весеннее время происходит повышение температуры воздуха и воды. Аэрация в это время способствует тому, что начинают свою деятельность особые бактерии, которые своей жизнедеятельностью способствуют значительному улучшению экологического баланса в водоеме.

Оптимальная концентрация кислорода

Существуют разные пороговые концентрации кислорода в воде для различных видов рыб. Однако не нужно на них ориентироваться, так как этот показатель является критическим и может вызывать у обитателей водоема сильнейший стресс и в дальнейшем гибель.

Снижение концентрации кислорода в воде до половины нормы приводит к замедлению роста рыбы из-за сниженного потребления пищи.

Допустимый диапазон для окуня, судака, форели и осетра от 50 до 90%. При снижении содержания кислорода ниже этой нормы происходит заметное уменьшение активности рыбы. Есть данные, что в осеннее и зимнее время при снижении уровня кислорода до 45% форель полностью прекращает клевать. Содержание кислорода в пруду для карпа составляет 5-7 мг/л, выдерживает понижение кислорода до 3 мг/л. Характерным признаком нехватки кислорода в пруду является выход карпа на поверхность.

Учитывая все вышеописанное, хозяйствам, которые разводят рыбу и организовывают платную рыбалку, рекомендуется проводить постоянную аэрацию водоемов, повышая содержание кислорода в воде до 90 или 100% ( зимой это 12-13 мг/л, а летом – 6-8 мг/л).

Типы аэраторов

Для обогащения воды в водоемах кислородом существуют специальные устройства – аэраторы. Классификация Ф. Уитона разделяет все аэраторы на четыре основных типа:

  • поверхностные;
  • гравитационные;
  • турбинные;
  • диффузионные.

Существуют также аэраторы, которые сочетают в себе признаки разных вышеперечисленных типов.

Кроме того, есть аэраторы эжекторные, распылительные, U-образные. Выбор аэратора для насыщения воды кислородом и расчет эффективности его работы является сложным процессом. Для этого производятся специальные расчеты. Известно, что эффективность работы любого аэратора зависит от степени насыщения кислородом воды в водоеме. К примеру, при достижении насыщения воды кислородом до 70% эффективность работы аэраторов далее быстро снижается.

Что касается энергетических затрат на процесс аэрации, то по Ф. Уитону для введения в воду одного килограмма кислорода нужно потратить до 103 кВт/час.

Определение количества аэраторов и их мощности

Есть несколько вариантов того, как можно определить количество необходимых устройств для проведения аэрации в водоеме, а также их мощность.

Рассмотрим один из вариантов:

1. Необходимо определить количество кислорода, требуемого для конкретной водной экосистемы. Для этого высчитывают количество кислорода, потребляемого грунтом, водными растениями и рыбой, а также биохимическое потребление кислорода водой.

Для этих целей проводятся специальные натурные и лабораторные исследования. Данный расчет является одним из самых сложных и ответственных. На основе полученных результатов исследований определяется общая потребность водоема в кислороде, от которой напрямую зависит выбор устройства для проведения аэрации.

2. Далее нужно определить Кla – это суммарный коэффициент перехода кислорода. Здесь вносится поправка на температуру и применяется следующее уравнение: (Кla)т= (Кla)20 С(т-20) , где Кla – обозначает скорость переноса кислорода при температуре т;( Кla ) 20 – это скорость переноса кислорода при температуре 20 0 С; а С – является константой, равной 1,0102.

3. Определяется значение Кla для чистой и воды, находящейся в водоеме, в одинаковых условиях.

4. Предполагается будущий градиент содержания кислорода при работе устройства для аэрации.

5. Устанавливается скорость, с которой кислород за один час переходит в воду: ПК = Кla (Cs-C) V 106. Здесь Кla – является суммарным коэффициентом перехода кислорода, ч-1; Cs – обозначает насыщение воды в водоеме кислородом в данных условиях, мг/л, С – означает концентрацию в воде кислорода во время работы устройства для аэрации, мг/л; V– это объем воды, подвергающейся аэрации, л.

6. Показатель общего потребления мощности устройства для аэрации. Для этого потребность в кислороде делится на скорость насыщения воды О2 за один кВт в час, характерную для конкретного типа аэратора.

7. Дальше, с помощью ранее полученных показателей, определяется требуемое количество аэраторов для насыщения кислородом воды в водоеме. Для этого общая потребляемая мощность делится на мощность конкретного типа аэратора.

8. Определяются места размещения аэраторов в водоеме так, чтобы они были расположены равномерно по всей площади.

Источник

Публикации

Под аэрацией понимается повышение содержания растворенного в воде кислорода за счет его поглощения из воздуха. Воду аэрируют при выращивании рыбы, перевозках и хранении в садках.

Величина потребления кислорода рыбами.

Интенсивность потребления кислорода рыбами зависит от его содержания в воде и температуры; при повышении температуры потребление повышается, а при постоянной температуре и снижении содержания кислорода-снижается. Минимальное содержание кислорода в воде (в мг/л), при котором рыба способна выживать, называется пороговым содержанием кислорода.

Пороговое содержание кислорода в воде при разной температуре

Вид рыб Пороговое содержание кислорода в воде при температуре
0 0 С 4 0 С 10 0 С 15 0 С 20 0 С
Лещ 0,3 / — 0,3 / 0,5 0,15 / 0,60 — / 0,5 — / 0,3
Судак 0,5 / — 0,7 / 0,8 — / 0,7 — / 0,8 — / 0,5
Окунь 0,3 / — 0,4 / 0,4 0,5 / 0,4 — / 0,4 — / 0,8
Щука 0,3 / — 0,4 / 0,45 0,20 / 0,25 — / 0,25 — / —
Карп 0,3 / — 0,3 / 0,4 0,1 / 0,2

В числителе указано пороговое содержание кислорода зимой, в знаменателе — летом.

Величина эта для различных видов рыб неодинакова, но весьма устойчива для каждого данного вида. Так, для товарного карпа пороговое содержание кислорода 0,3 — 0,5 мг/л, а для сеголетка — 0,1 — 0,5 мг/л; содержание же кислорода, при котором начинается ослабление дыхания — 2,0 — 2,5 мг/л и 5,0 — 6,0 мг/л соответственно.

Для расчета плотности посадки рыб при их содержании и перевозках необходимо знать зависимость растворимости кислорода в воде от температуры. Растворимость кислорода с повышением температуры воды уменьшается:

Растворимость кислорода в зависимости от температуры

Температура коды, 0 С Растворимость кислорода, мг/л Температура коды, 0 С Растворимость кислорода, мг/л
12 10,99 22 9,06
14 10,54 24 8,78
16 10,13 26 8,48
18 9,74 28 8,22
20 9,39 30 7,98

Количество потребляемого рыбами кислорода в час зависит от их вида и массы. Так, при температуре воды 10 0 С карп массой 500 — 700 г потребляет 45 мг кислорода, карп массой 320 — 350 г — 65 мг, а сеголеток — 120 мг, Эти величины приведены к 1 кг массы рыбы.

По правилу Ван-Гоффа при повышении температуры на 10 0 С приблизительное потребление кислорода рыбами увеличивается в 2 — 3 раза.

Например, надо определить количество воды, необходимое для содержания или перевозки 500 кг товарного карпа при температуре воды 18 0 С в течение 20 ч.

По приведенным выше данным товарный карп массой 500 — 700 г за 1 ч при 10 0 С потребляет 45 мг кислорода на 1 кг массы. При темнературе 18 0 С потребление будет больше 45*1,8 = 81 мг/ч. При температуре 18 0 С в 1 л воды содержится 9,74 мг кислорода. Для выживания карпа необходимо иметь остаточное (пороговое) содержание кислорода 0,3 — 0,5 мг/л. Примем равныйм 0,5 мг/л. Тогда из 9,74 мг могут использоваться 9,74 — 0,5 = 9,24 мг кислорода. Поскольку за 1 ч при 18 0 С на 1 кг карпа требуется 81 мг, то это количество может быть получено из 81 / 9,24 = 8,766 л воды. При хранении же 500 кг карпа в течение 20 ч потребуется 8,766*500*20 = 87 660 л воды (при условии, что кислород воздуха в воду не поступает).

Такое большое количество воды практически не всегда доступно, да и слишком дорого обойдется такое хранение или перевозка, поэтому и нужна аэрация воды, которая позволяет резко сократить расход воды и повысить содержание в ней кислорода.

Методы аэрации воды искусственного водоёма с рыбой.

Существует несколько методов аэрации воды искусственного водоёма:

  • биологические
  • физические
  • химические
  • механические.

Практически в рыбоводстве применяются в основном механические методы аэрации, которые осуществляются следующими способами:

  • разбрызгиванием воды в воздухе (дождевание)
  • нагнетанием воздуха в воду
  • перелопачиванием верхних слоев воды.

Аэрация воды искусственного водоёма методом разбрызгивания воды.

Разбрызгивание воды в воздухе. Воду забирают из пруда насосами и подают на возможно бОльшую высоту с одновременным разбрызгиванием или распылением при помощи насадок, форсунок и распылителей. Насосы забирая обедненную кислородом прудовую воду, разбрызгивают ее в воздухе, в результате чего она насыщается кислородом. При этом чем мельче частицы воды, т. е. чем больше их количество (значит и поверхность соприкосновения с воздухом) и чем дольше они находятся в воздухе, тем интенсивнее идет процесс аэрации.

При падении воды, поданной в воздух струей, обратно в пруд также происходит аэрации за счет волнения поверхности и образования водопадов.

Экспериментально доказано, что аэрация воды с низким содержанием кислорода более эффективна, если воду подают в пруд сплошной или разорванной струей, а не в виде дождя. Объясняется это тем, что мелкие капли падают на поверхность воды спокойно, в то время как неразбрызгиваемая струя, обрушиваясь на поверхность, вызывает бурление, вспенивание и волнение. B результате этого струя увлекает с собой в толщу аэрируемой воды воздух и одновременно улучшает условия поверхностной аэрации. Повышенная эффективность струевой аэрации объясняется возможно еще и тем, что общая поверхность соприкосновения воздуха и воды в этом случае больше, чем при каплевой (дождевой) аэрации.

Для аэрации воды разбрызгиванием рекомендуется применять насосы, которые направляют воду под напором в водоем, при этом струя должна быть направлена под углом к поверхности водоема.

Для предотвращения и ликвидации заморов рыбы очень важно осуществить как можно больший круговорот воды, т. е. эффективность средств аэрации зависит от их производительности.

Метод аэрации дождеванием применяется при выращивании рыбы, ее транспортировке и особенно пои хранении в рыбоуловителях и садках. При хранении рыбы дождевание целесообразно осуществлять постоянно, так как в этом случае лучше используется объем сооружений за счет уплотнения посадок при одном и том же расходе воды на проточность, а нередко и при его сокращении.

Разбрызгивание применяется также при подаче воды в водоемы и сооружения, в которых находится рыба. Для этого используют изливы и водоподающие напорные трубопроводы с насадками и отверстиями, а также каскадные ступеньки, разбивающие подаваемую струю воды на брызги, которые поглощают кислород из воздуха. Метод аэрации разбрызгиванием при равных условиях менее эффективен, чем нагнетание воздуха в воду и перелопачивание, а удельный расход затрачиваемой на него мощности выше.

Аэрация воды искусственного водоёма методом нагнетания воздуха в воду.

Нагнетание воздуха в воду. Этот метод аэрации осуществляется подачей воздуха под давлением в толщу аэрируемой воды. Насыщение воды кислородом осуществляют с помощью компрессоров, которые нагнетают воздух под давлением по шлангам с распылителями. Эффективность насыщения воды кислородом зависит от продолжительности соприкосновения пузырьков воздуха с водой и их размеров.

Чем меньше пузырьки и больше их количество, тем больше поверхность соприкосновения воздуха с водой и тем больше растворимость кислорода. Например, при прохождении слоя воды толщиной 1 м пузырек воздуха диаметром 6,5 мм поднимается со скоростью 4 см/с (продолжительность подъема 25 с), пузырек диаметром 1 мм — со скоростью 12 см/с (продолжительность подъема 8 с) и пузырек диаметром 2 мм — со скоростью 24 см/с (подъем 4 c). Процент растворяющегося кислорода при этом колеблется в пределах 2 — 3% в зависимости от температуры.

Определить количества воздуха Q, которое необходимо продувать через воду за 1 ч для поддержания жизнедеятельности 1 кг массы рыбы можно по формуле:

Q = a / l*n

где а — интенсивность дыхания рыбы, т. е, потребление кислорода за 1 ч на 1 кг массы, (в см 3 );

l — содержание кислорода в 1 л продуваемого газа, (в см 3 );

n — коэффициент растворения кислорода из продуваемого газа, выраженный в десятичных долях.

Интенсивность дыхания, т. е. количество потребляемого кислорода на единицу массы рыбы, определяют делением величины потребляемого кислорода на 1,44. При меньшем содержании кислорода в воде интенсивность растворения кислорода из продуваемого газа больше, и наоборот. Это обстоятельство необходимо учитывать при перевозках и хранении живой рыбы для определения плотности посадок.

Для успешного осуществления аэрации воды нагнетанием воздуха первостепенное значение имеет выбор средств распыления воздуха. В зависимости от величины искусственного водоёма и количества живущей в нем рыбы используются либо аэраторы голландской фирмы Velda модели Silenta Pro, либо аэраторы AirEco, AirPro фирмы Aquacontrol (США).

Рассмотренный метод аэрации применяется как при выращивании и содержании, так и при перевозках и хранении живой рыбы.

Аэрация воды искусственного водоёма методом перелопачивания воды.

Метод перелопачивания воды заключается в перемешивании верхних слоев воды с атмосферным воздухом. Осуществляется перелопачивание обычно механическими (реже гидравлическими) устройствами, при помощи которых вода на поверхности приводится в движение (бурление и вспенивание). В результате происходит интенсивное насыщение ее кислородом воздуха с одновременным выделением углекислого и других газов. При этом движущиеся и особенно вращающиеся устройства с лопастями захватывают воду и выбрасывают ее в воздух, а также захватывают воздух и нагнетают его в толщу. Таким образом, перелопачивание является как бы комбинацией двух ранее рассмотренных методов аэрации.

Исследования показывают, что метод перелопачивания воды наиболее эффективен. Причем такая аэрация может осуществляться попутно с выполнением различных операций, например, гребными колесами и винтами самоходных лодок (камышекасилок, кормараздатчиков, удобрительных плавучих устройств), вращающимися барабанами, приводимыми в действие потоком воды при ее подаче в пруды, садки и рыбоуловители и др. В таком совмещении аэрации с различными работами заключается одна из основных преимуществ этого метода.

Однако для заполненных прудов одним из существенных недостатков этого метода является то, что кислородом насыщаются в основном верхние слои воды, в то время как больше всего нуждаются в аэрации придонные слои, в которых содержание кислорода всегда ниже.

Сравнительная эффективность различных методов аэрации воды сводится к следующим показателям: нагнетание воздуха в воду на 20 — 30% эффективнее выбрасывания струи воды в воздух, а механическое перелопачивание воды лопастями на вертикальном валу в 4 — 5 раз эффективнее первых двух способов. Эти показатели получены при примерно одинаковых затратах мощности.

По материалам: Гриб В.К., Морев А.Н. — Комплексная механизация прудового рыбоводства

Источник



Расчет оптимального кислородного режима в рыбоводных прудах

Дефицит растворенного в воде кислорода – основная причина не только гибели рыбы, но и плохого клева. Причем это справедливо как для зимы, так и для лета. Наряду с болезнями, дефицит кислорода зачастую сводит к нулю все усилия, направленные на создание рыбалки. Можно спорить о том, как влияют на поведение рыб перепады атмосферного давления, освещенность, направление и сила ветра. И лишь в отношении концентрации растворенного кислорода можно сказать определенно: при плохом кислородном режиме хорошего клева не будет.

Разные виды рыб имеют различные пороговые концентрации кислорода. Так, в «Справочнике по акклиматизации водных организмов» (А.А.Козлов и др., 1977) приводятся следующие данные о пороговых значениях кислорода для разных видов рыб (пересчитано из мл/л в более привычные мг/л О2)

Карповые

Карп — 1,0-1,43; Карась – 0,1-0,13; Плотва – 0,1-0,43; Линь – 0,43-0,14

Осетровые

Осетр – 1,43-1,85; Севрюга — 1,86-2,43; Стерлядь – 3,43

Лососевые

Форель – 1,86-2,57 (при 10 °С); Лосось молодь – 1,14 – 1,86

Окуневые

Окунь годовики – 0,71-1,43; Судак – 0,57-0,86

Однако при содержании рыбы в прудах нельзя ориентироваться на пороговые значения кислорода, т.к. состояние рыбы при пороговых значениях кислорода – это состояние сильнейшего стресса, предшествующее гибели. Как пишут в своей монографии Дж. Алабастер и Р. Ллойд (1984), любое уменьшение содержания кислорода, даже до 50% насыщения, может снизить потребление пищи и темп роста молоди рыб при прочих благоприятных условиях.

Существует определенная хорошо выраженная зависимость между активным обменом (т.е. физической активностью) и насыщением воды кислородом. Для осетровых, окуневых и лососевых рыб диапазон кислородных потребностей лежит в пределах от 50 до 90% нормального насыщения. Иными словами, если содержание растворенного в воде кислорода ниже этого уровня, рыба не может проявлять высокую активность, и, скорее всего, в этом случае не будет хорошего клева.

По нашим собственным наблюдениям снижение содержания кислорода ниже 6 мг/л ( 45% насыщения) в осеннее-зимний период приводит к тому, что форель практически полностью перестает клевать.

Исходя из этого можно рекомендовать тем хозяйствам, которые занимаются платной рыбалкой, поддерживать содержание кислорода в воде близким к полному насыщению 90-100% ( или 12-13 мг/л в зимний период и 6-8мг/л в летний).

Решить проблему дефицита кислорода в воде позволяют аэраторы — устройства, обогащающие воду кислородом.

По классификации Ф.Уитона (1985), существуют аэраторы четырех типов: гравитационные, поверхностные, диффузионные и турбинные, а также конструкции, в которых сочетаются различные признаки. Выделяют также распылительные, эжекторные, U -образные аэраторы. Подбор аэратора и расчет его эффективности довольно сложен.

Существует несколько подходов к определению числа и мощности поверхностных аэраторов. Один из вариантов представлен ниже.

1. Определяют потребность водной экосистемы в кислороде, при этом учитывается биохимическое потребление кислорода водой при той или иной температуре, потребление кислорода грунтом, потребление кислорода рыбой, водными растениями. Этот расчет является наиболее ответственным и самым сложным, так как он связан с необходимостью проведения ряда лабораторных и натурных исследований. Именно результаты этих измерений ложатся в основу определения кислородных потребностей пруда и непосредственно влияют на выбор аэраторов.

2. Определяют К la – суммарный коэффициент перехода кислорода, ч -1 ; вносят поправку на температуру по следующему уравнению: (К la )т= (К la )20 С (т-20) , где К la – скорость переноса кислорода при температуре т;( К la ) 20 – скорость переноса кислорода при температуре 20 0 С; С – константа равная 1,0102.

3. Определяют а по значению К la для чистой и прудовой воды в сходных условиях.

4. Определяют будущий градиент концентрации кислорода при работе аэратора.

5. Определяют скорость перехода кислорода в воду за 1 час: ПК = К la ( Cs — C ) V 10 6

где К la –суммарный коэффициент перехода кислорода, ч -1 ; Cs – насыщение прудовой воды кислородом в данных условиях, мг/л; С – концентрация кислорода во время работы аэратора, мг/л; V — объем аэрируемой воды, л.

6. Разделив потребности в кислороде на скорость насыщения кислородом за 1квт*ч для данного типа аэратора, определяют общую потребляемую мощность аэратора, необходимую для насыщения воды кислородом.

7. Разделив общую потребляемую мощность на мощность аэратора данного типа, определяют необходимое для работы число аэраторов.

8. Аэраторы размещают равномерно по площади водоема.

В действительности метод расчета может быть гораздо проще, так как все серьезные производители обычно приводят данные о производительности своих аэраторов по кислороду. Неизменным во всех расчетах является первый пункт, говорящий о необходимости определения потребности водоема в кислороде. Именно от правильности этих первичных расчетов зависит успех или неудача в выборе аэратора.

В ряде случаев неоправданно интенсивная аэрация может вызвать негативные последсвия, в частности, переохлаждение воды зимой. Падение температуры воды ниже 1 градуса снижает активность клева рыбы. Поэтому аэрировать водоем надо тогда, когда это необходимо.

Как можно понять из сказанного выше, существуют некоторые принципиальные трудности в обеспечении оптимального кислородного режима в прудах для рыбалки. С одной стороны, необходимо стремиться к содержанию кислорода 80-90% насыщения и выше, с другой – уже после 70% насыщения эффективность аэраторов существенно падает. Выходом их этой ситуации является либо применение более мощных аэраторов, заведомо перекрывающих возможный дефицит кислорода, либо использование чистого кислорода. В последние годы широкое распространение находят оксигенаторы,- устройства, в которых вода непосредственно контактирует с чистым кислородом и из которых кислород может выйти, только растворившись в воде. Коэффициент использования кислорода в таких устройствах достигает 90% и более, а энергозатраты на порядок меньше обычных аэраторов.

Источник

Определение количества содержания кислорода в воде искусственного водоёма.

Кислород в воде искусственного водоёма.

При создании водоёмов для рыб особое внимание стоит уделить вопросу изучения кислородного режима водоёмов, так как наличие в воде водоёма растворенного кислорода — обязательное условие существования большинства водных организмов. Потребность в кислороде у отдельных видов рыб различна. Так, для нормально жизнедеятельности лососевых концентрация кислорода должна быть 8-11 мг/л, а для карповых — 5-8 мг/л. При концентрации кислорода 3 мг/л карп становится беспокойным, хуже питается, а при падении уровня кислорода до 1,2 — 0,6 мг/л (в зависимости от температуры воды) возникает угроза гибели рыбы. От насыщения воды кислородом зависит жизнедеятельнсть рыб. При падении содержания кислорода ухудшаются условия питания рыб, снижается их рост, понимается устойчивость ко многим неблагоприятным факторам внешней среды, в том числе к ядам промышленных и бытовых сточных вод.

Содержание растворенного в воде кислорода зависит от двух процессов, проходящих одновременно в водоеме. С одной стороны, это процессы, обогащающие воду кислородом. К ним относятся фотосинтез растений, а также поступление его из атмосферы, с другой стороны, уменьшаеющие его содержание в воде различные окисилтельные процессы. (см. рис.)

Баланс кислорода в водоёме.

Мощный источник обогащения воды кислородом — процесс фотосинтеза водных растений. Интенсивность его зависит от развития водорослей, температуры и освещения воды. Второй источник — атмосфера, кислород которой может поглащаться поверхностными слоями воды. Насыщение воды кислородом этим путем значительно ускоряется при интенсивном разбрызгивании, течении, ветровом перемешивании.

Расходование кислорода, растворенного в воде искусственного водоёма.

Кислород расходуется на различные окислительные процессы, в том числе и дыхание водных организмов. Потребление кислорода рыбами приведено в Таблице 1.

Средняя масса особи, г Температура, 0 С
5 10 15 20
Карповые
0,5 48 95 161 252
1,0 44 86 146 229
5,0 36 70 118 187
10,0 32 62 107 168
50,0 26 50 85 133
500,0 13 36 62 94
Осетровые
0,5 68 132 226 351
1,0 60 116 198 310
5,0 44 85 146 230
10,0 38 75 128 200
50,0 31 55 94 148
500,0 22 44 74 117
Лососёвые
0,5 78 150 257 403
1,0 73 142 242 380
5,0 67 127 218 337
10,0 62 118 204 318
50,0 54 104 176 278
500,0 45 86 149 232

Таблица 1. Потребление кислорода рыбой (мг/кг/ч)

Значительное количество кислорода используется на окисление органических веществ. Например:

  • За сутки донные отложения на 1 м 2 дна поглощают от 0.4 до 1.6 г кислорода.
  • Не съеденный рыбой 1 кг корма, окисляясь, поглащает от 10 до 50 г кислорода.

В результате изменения температуры воды, освещенности и влияния других факторов в водоёмах наблюдаются периодические сезонные и суточные колебания в количестве кислорода, растворенного в воде. Поэтому в водоёмах с рыбой обязательно необходимо постоянно контролировать уровень содержания кислорода в воде.

Определение содержания растворенного кислорода в воде.

Определение содержания растворенного кислорода в воде проводят по методу Винклера. Он основан на способности гидрата закиси марганца реагировать в щелочной среде с кислородом, растворенным в воде. Гидрат закиси марганца связывает кислород с образованием осадка гидрата окиси марганца. После добавления кислоты осадок растворяется и раствор в зависимости от количества выделившего иода окрашивается в коричневый цвет различной интенсивности. Выделившийся иод титруют раствором гипосульфата. По количеству гипосульфита, израсходованного на титрование пробы, рассчитывают количество кислорода.

Пробу воды на кислород берут с помощью батометра или других приспособлений. Из батометра пробу переносят в специальные кислородные склянки с притертыми пробками. После этого приступают к фиксации кислорода. Для этого в склянку объемом 100-150 мл вводят 2 мл раствора хлористого марганца MnCl2 и 2 мл раствора едкого натра с иодистым калием (NaOH+KI). Пипетку с реактивами погружают в склянку и затем по мере выливания из них реактива поднимают вверх. Для каждого реактива должна быть своя пипетка, помеченная каким-либо способом. После прибавления хлористого марганца и щелочи склянки зкрывают и содежимое тщательно перемешивают. Когда осадок опустится на дно, склянку открывают и пипеткой воодят 5 мл серной кислоты (1:4) или концентрированной соляной кислоты. Затем склянку закрывают и перемешивают. После растворения осадка из склянки берут пипеткой 50 или 100 мл исследуемой воды, переносят в коническую колбу на 200-250 мл и титруют 0,01 н. или 0, 02 н. раствором гипосульфита до слабо-желтого цвета. После этого к пробе добавляют 1 мл крахмала и окрасившийся в синий цвет раствор титруют до обесцвечивания. Учитывают все количество гипосульфита, пошедшее на титрование.

Расчет количества кислорода О2, растворенного в воде, проводится по следующей формуле, мг/л:

Количество растворенного кислорода = (П*К*N*8*1000) / (О-о1)

  • П — количество 0,01 н. раствора гипосульфита, израсходованного на титрование пробы, мл;
  • К — поправка на нормальность гипосульфита;
  • N — нормальность раствора гипосульфита;
  • О — объем пробы, мл;
  • о1 — объем прибавленных реактивов, мл;
  • 8 — коэффициент пересчета на кислород (1 мл 0,01 н. раствора гипосульфита соответствует 0,08 мг кислорода).

Например, на титрование пробы пошло 7,1 мг гипосульфита; поправочный коэффициент К раствора гипосульфита — 0,9; объем пробы, взятой на титрование, 100 мл. Содержание кислорода О2, растворенного в воде, равно:

(7,1*0,9*0,01*8*1000) / (100-2) ≈ 5,2 мг/л

Относительное содержание кислорода в воде искусственного водоёма.

При анализе кислородного режима водоёма важно знать не только абсолютное количество кислорода, растворенного в воде, но и его относительное содержание — процент насыщения от нормы при данной температуре.

По относительному содержанию кислорода судят о напряженности окислительных процессов в водоёме.

Таблица 2. Содержание кислорода, растворенного в воде в зависимости от температуры.

Пример. Предположим, что содержание кислорода в водоёме составляет 5,7 мг/л. Температура воды 24 0 С. Необходимо рассчитать относительное содержание кислорода. Из Таблицы 2 находим, что при данной температуре должно быть 8, 33 мг/л растворенного в воде кислорода. Тогда относительное содержание кислорода составит:

х = 5,7 * 100 / 8,33 = 68,4%.

Относительное содержание кислорода в воде при данной температуре — 68,4%.

Источник

Кислород

Существует четко выраженная зависимость между концентрацией растворенного кислорода и белковым, жировым и углеводным обменом у рыб. Среди культивируемых рыб лососевые являются наиболее, а карповые наименее оксифильными. Пороговая концентрация кислорода с возрастом рыб понижается. Свободные эмбрионы радужной форели погибают при содержании кислорода 2,2–2,7 мг/л, годовики – 2,0–2,4 мг/л, двухлетки – 1,5–2,0 мг/л, тогда как соответствующие возрастные группы карпа погибают лишь при примерно вдвое более низком содержании кислорода. Осетровые рыбы занимают промежуточное положение. Принято считать, что оптимальный уровень кислорода для рыб соответствует нормальному насыщению воды кислородом при оптимальной температуре. Следовательно, для лососевых рыб оптимальный уровень кислорода для питания и роста (при температуре 16–19 °С) составляет 9,4–10 мг/л, осетровых (при температуре 20–26 °С) – 8,3–9,2 мг/л, а карповых (при температуре 25–30 °С) – 7,1–8,4 мг/л.

В процессе пищеварения (переваривание, всасывание и трансформация) кислород, растворенный в воде, действует как лимитирующий фактор, резко тормозящий рост и уменьшающий эффективность конвертирования пищи, когда его концентрация становится ниже критического уровня. При уменьшении содержания кислорода до 45–50 % насыщения потребление пищи снижается почти в 2 раза, а ее усвояемость уменьшается на 40–50 %, что приводит к снижению более чем в 2 раза скорости роста. У радужной форели снижение уровня кислорода за пределы 7 мг/л вызывает также соответствующее снижение интенсивности питания, обмена и роста. Между нормальным насыщением воды кислородом и уровнем, при котором обмен замедляется, находится зона кислородной адаптации рыб. За пределами этой зоны интенсивность потребления кислорода резко снижается. Критические концентрации кислорода в воде для разных видов и возрастных групп рыб различны.

При создании необходимой (по возможности максимальной) плотности посадки рыбы в условиях индустриального рыбоводства необходимо предусматривать условия, при которых рыба будет достаточно обеспечена кислородом, потому что потребление рыбой кислорода прямо пропорционально температуре воды и обратно пропорционально массе рыбы. Эта зависимость описывается следующим уравнением:

Q = a ∙ Wk ,

где Q – потребность в кислороде, мг/(кг/ч);

a – коэффициент, учитывающий потребление кислорода рыбой массой 1 г;

W – масса рыбы, кг;

k – коэффициент, учитывающий потребление кислорода рыбой разного размера.

По мере увеличения массы рыбы относительное потребление кислорода снижается, поэтому коэффициент k всегда меньше единицы.

Рыба потребляет кислород не только необходимый для дыхания, но и для окисления органических веществ, которые накапливаются при выращивании рыб в основном за счет экскрементов и потерь корма. Кроме того, присутствие углекислоты затрудняет использование кислорода из-за снижения рН.

При создании оптимальных условий содержания рыбы в рыбоводных емкостях следует учитывать концентрацию кислорода в воде и интенсивность его потребления, различая при этом такие понятия, как:

1) количество растворенного кислорода в воде (мг/л), т. е. то количество, которое может быть использовано рыбой в процессе жизнедеятельности;

2) специфическое потребление кислорода рыбой (мг/(кг/ч), т. е. то потребление кислорода, которое необходимо для роста и развития.

Потребление кислорода резко возрастает у питающейся рыбы в результате усиления обмена, окисления съеденного корма и выделения продуктов обмена. Возможное количество корма (кг/сут), которое может быть использовано рыбой при конкретном количестве кислорода, можно определить по следующей зависимости:

Х = (КН – КК) ∙ 1,44 n / 220,

где КН – начальное содержание кислорода в поступающей воде, мг/л;

КК – конечное минимальное содержание кислорода в воде, которая вытекает, 5 мг/л;

n – количество воды, подаваемой в данную рыбоводную емкость,

1,44 – количество воды в сутки при интенсивности подачи 1 л/мин, т;

220 – необходимое количество кислорода для усвоения рыбой 1 кг гранулированного корма.

Расчеты в этих формулах и зависимости являются эмпирическими и фактически учитывают зависимость потребления кислорода от температуры воды, размеры рыбы и качества корма, а также влияние продуктов обмена на способность рыбы использовать кислород в конкретных условиях кормления.

Источник

Читайте также:  Функции митоза и мейоза таблица
Adblock
detector