Меню

Оценка значимости по критериям Фишера и Стьюдента



Библиотека постов MEDSTATISTIC об анализе медицинских данных

Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic

Критерии и методы

ТОЧНЫЙ КРИТЕРИЙ ФИШЕРА

Рональд Фишер

Рональд Фишер

– это критерий, который используется для сравнения двух и более относительных показателей, характеризующих частоту определенного признака, имеющего два значения. Исходные данные для расчета точного критерия Фишера обычно группируются в виде четырехпольной таблицы, но могут быть представлены и многопольной таблицей.

1. История разработки критерия

Впервые критерий был предложен Рональдом Фишером в его книге «Проектирование экспериментов». Это произошло в 1935 году. Сам Фишер утверждал, что на эту мысль его натолкнула Муриэль Бристоль. В начале 1920-х годов Рональд, Муриэль и Уильям Роуч находились в Англии на опытной сельскохозяйственной станции. Муриэль утверждала, что может определить, в какой последовательности наливали в ее чашку чай и молоко. На тот момент проверить правильность ее высказывания не представлялось возможным.

Это дало толчок идее Фишера о «нуль гипотезе». Целью стала не попытка доказать, что Муриэль может определить разницу между по-разному приготовленными чашками чая. Решено было опровергнуть гипотезу, что выбор женщина делает наугад. Было определено, что нуль-гипотезу нельзя ни доказать, ни обосновать. Зато ее можно опровергнуть во время экспериментов.

Было приготовлено 8 чашек. В первые четыре налито молоко сначала, в другие четыре – чай. Чашки были помешаны. Бристоль предложили опробовать чай на вкус и разделить чашки по методу приготовления чая. В результате должно было получиться две группы. История говорит, что эксперимент прошел удачно.

Благодаря тесту Фишера вероятность того, что Бристоль действует интуитивно, была уменьшена до 0.01428. То есть, верно определить чашку можно было в одном случае из 70. Но все же нет возможности свести к нулю шансы того, что мадам определяет случайно. Даже если увеличивать число чашек.

Эта история дала толчок развитию «нуль гипотезы». Тогда же был предложен точный критерий Фишера, суть которого в переборе всех возможных комбинаций зависимой и независимой переменных.

2. Для чего используется точный критерий Фишера?

Точный критерий Фишера в основном применяется для сравнения малых выборок. Этому есть две весомые причины. Во-первых, вычисления критерия довольно громоздки и могут занимать много времени или требовать мощных вычислительных ресурсов. Во-вторых, критерий довольно точен (что нашло отражение даже в его названии), что позволяет его использовать в исследованиях с небольшим числом наблюдений.

Особое место отводится точному критерию Фишера в медицине. Это важный метод обработки медицинских данных, нашедший свое применение во многих научных исследованиях. Благодаря ему можно исследовать взаимосвязь определенных фактора и исхода, сравнивать частоту патологических состояний между разными группами пациентов и т.д.

3. В каких случаях можно использовать точный критерий Фишера?

  1. Сравниваемые переменные должны быть измерены в номинальной шкале и иметь только два значения, например, артериальное давление в норме или повышено, исход благоприятный или неблагоприятный, послеоперационные осложнения есть или нет.
  2. Критерий подходит для сравнения очень малых выборок: точный критерий Фишера может применяться для анализа четырехпольных таблиц в случае значений ожидаемого явления менее 10, что является ограничением для применения критерия хи-квадрат Пирсона.
  3. Точный критерий Фишера бывает односторонним и двусторонним. При одностороннем варианте точно известно, куда отклонится один из показателей. Например, во время исследования сравнивают, сколько пациентов выздоровело по сравнению с группой контроля. Предполагают, что терапия не может ухудшить состояние пациентов, а только либо вылечить, либо нет.
    Двусторонний тест является предпочтительным, так как оценивает различия частот по двум направлениям. То есть оценивается верятность как большей, так и меньшей частоты явления в экспериментальной группе по сравнению с контрольной группой.

Аналогом точного критерия Фишера является Критерий хи-квадрат Пирсона, при этом точный критерий Фишера обладает более высокой мощностью, особенно при сравнении малых выборок, в связи с чем в этом случае обладает преимуществом.

4. Как рассчитать точный критерий Фишера?

Допустим, изучается зависимость частоты рождения детей с врожденными пороками развития (ВПР) от курения матери во время беременности. Для этого выбраны две группы беременных женщин, одна из которых — экспериментальная, состоящая из 80 женщин, куривших в первом триместре беременности, а вторая — группа сравнения, включающая 90 женщин, ведущих здоровый образ жизни на протяжении всей беременности. Число случаев ВПР плода в экспериментальной группе составило 10, в группе сравнения — 2.

Вначале составляем четырехпольную таблицу сопряженности:

Исход есть (Наличие ВПР) Исхода нет (Отсутствие ВПР) Всего
Фактор риска есть (Курящие) A = 10 B = 70 (A + B) = 80
Фактор риска отсутствует (Некурящие) C = 2 D = 88 (C + D) = 90
Всего (A + C) = 12 (B + D) = 158 (A + B + C + D) = 170

Точный критерий Фишера рассчитывается по следующей формуле:

где N — общее число исследуемых в двух группах; ! — факториал, представляющий собой произведение числа на последовательность чисел, каждое из которых меньше предыдущего на 1 (например, 4! = 4 · 3 · 2 · 1)

В результате вычислений находим, что P = 0,0137.

5. Как интерпретировать значение точного критерия Фишера?

Достоинством метода является соответствие полученного критерия точному значению уровня значимости p. То есть, полученное в нашем примере значение 0,0137 и есть уровень значимости различий сравниваемых групп по частоте развития ВПР плода. Необходимо лишь сопоставить данное число с критическим уровнем значимости, обычно принимаемым в медицинских исследованиях за 0,05.

  • Если значение точного критерия Фишера больше критического, принимается нулевая гипотеза и делается вывод об отсутствии статистически значимых различий частоты исхода в зависимости от наличия фактора риска.
  • Если значение точного критерия Фишера меньше критического, принимается альтернативная гипотеза и делается вывод о наличии статистически значимых различий частоты исхода в зависимости от воздействия фактора риска.

Источник

Критерии Фишера и Стьюдента

Критерий Фишера для двух выборок оценивает нулевую гипотезу о равенстве дисперсий, а критерий Стьюдента — гипотезу о равенстве выборочных средних.

Остановимся более подробно на критерии Стьюдента и рассмотрим t-критерий для независимых и зависимых выборок.

t-критерий для независимых выборок

Цель, предположения. t-критерий является наиболее часто используемым методом обнаружения различия между средними двух выборок. Например, t-критерий можно использовать для сравнения средних показателей группы пациентов, принимавших определенное лекарство, с контрольной группой, где принималось безвредное лекарство. Теоретически, t-критерий может применяться, даже если размеры выборок очень небольшие (например, 10; некоторые исследователи утверждают, что можно исследовать выборки меньшего размера), и если переменные нормально распределены (внутри групп), а дисперсии наблюдений в группах не слишком различны. Предположение о нормальности можно проверить, исследуя распределение (например, визуально с помощью гистограммы) или применяя какой-либо критерий нормальности. Равенство дисперсий в двух группах можно проверить с помощью F критерия или использовать более устойчивый критерий Левена. Если условия применимости t-критерия не выполнены, следует использовать непараметрические альтернативы t-критерия.

Читайте также:  Таблица распределения частот показывает

p-уровень значимости t-критерия равен вероятности ошибочно отвергнуть гипотезу о равенстве средних двух выборок, когда в действительности эта гипотеза имеет место. Иными словами, он равен вероятности ошибки принять гипотезу о неравенстве средних, когда в действительности средние равны. Некоторые исследователи предлагают, в случае, когда рассматриваются отличия только в одном направлении (например, рассматривается альтернатива: среднее в первой группе больше (меньше), чем среднее во второй), использовать одностороннее t-распределение и делить р-уровень двустороннего t-критерия пополам. Другие предлагают всегда работать со стандартным двусторонним t-критерием.

Расположение данных. Чтобы применить t-критерий для независимых выборок, требуется, по крайней мере, одна независимая ( группирующая) переменная (например, Пол: мужчина/женщина) и одна зависимая переменная (например, тестовое значение некоторого показателя, кровяное давление, число лейкоцитов и т.д.). С помощью специальных значений независимой переменной (эти значения называются кодами, например, мужчина и женщина) данные разбиваются на две группы. Приведем пример оценки данных с помощью t-критерия из учебника по статистике, сравнивающего среднее значение лейкоцитов в крови для мужчин и женщин.

ПОЛ Число лейкоцитов в крови
наблюдение 1 наблюдение 2 наблюдение 3 наблюдение 4 наблюдение 5 мужчина мужчина мужчина женщина женщина 111 110 109 102 104
среднее число лейкоцитов в крови для мужчин = 110, для женщин = 103

Графики t-критериев. Анализ данных с помощью t-критерия, сравнения средних и меры отклонения от среднего в группах можно производить с помощью диаграмм размаха (см. график ниже).

Эти графики позволяют визуально оценить степень зависимости между группирующей и зависимой переменными.

t-критерий для зависимых выборок

Внутригрупповая вариация. Степень различия между средними в двух группах зависит от внутригрупповой вариации (дисперсии) переменных. В зависимости от того, насколько различны эти значения для каждой группы, «грубая разность» между групповыми средними показывает более сильную или более слабую степень зависимости между независимой ( группирующей) и зависимой переменными. Например, если среднее число лейкоцитов равнялось 102 для мужчин и 104 для женщин, то разность внутригрупповых средних только на величину 2 будет чрезвычайно важной, когда все значения числа лейкоцитов мужчин лежат в интервале от 101 до 103, а все значения числа лейкоцитов в крови женщин — в интервале 103 — 105. В этом случае можно довольно хорошо предсказать число лейкоцитов в крови (значение зависимой переменной) исходя из пола субъекта (независимой переменной). Однако если та же разность 2 получена из сильно разбросанных данных (например, изменяющихся в пределах от 0 до 200), то этой разностью вполне можно пренебречь. Таким образом, можно сказать, что уменьшение внутригрупповой вариации увеличивает чувствительность критерия.

Цель. t-критерий для зависимых выборок очень полезен в тех довольно часто возникающих на практике ситуациях, когда важный источник внутригрупповой вариации (или ошибки) может быть легко определен и исключен из анализа. Например, это относится к экспериментам, в которых две сравниваемые группы основываются на одной и той же совокупности наблюдений (субъектов), которые тестировались дважды (например, до и после лечения, до и после тренинга). В подобных экспериментах значительная часть внутригрупповой изменчивости (вариации) в обеих группах может быть объяснена индивидуальными различиями субъектов. Заметим, что на самом деле, такая ситуация не слишком отличается от той, когда сравниваемые группы совершенно независимы, где индивидуальные отличия также вносят вклад в дисперсию ошибки. Однако в случае независимых выборок, вы ничего не сможете поделать с этим, т.к. не сможете определить (или «удалить») часть вариации, связанную с индивидуальными различиями субъектов. Если та же самая выборка тестируется дважды, то можно легко исключить эту часть вариации. Вместо исследования каждой группы отдельно и анализа исходных значений, можно рассматривать просто разности между двумя измерениями (например, «до » и «после «) для каждого субъекта. Вычитая первые значения из вторых (для каждого субъекта) и анализируя затем только эти «чистые (парные) разности», вы исключите ту часть вариации, которая является результатом различия в исходных уровнях индивидуумов. Именно так и проводятся вычисления в t-критерии для зависимых выборок. В сравнении с t-критерием для независимых выборок, такой подход дает всегда «лучший» результат (критерий становится более чувствительным).

Теоретические предположения t-критерия для независимых выборок относятся также к критерию для зависимых выборок. Это означает, что попарные разности должны быть нормально распределены. Если это не выполняется, то можно воспользоваться одним из альтернативных непараметрических критериев.

Расположение данных. Вы можете применять t-критерий для зависимых выборок к любой паре переменных в наборе данных. Заметим, применение этого критерия мало оправдано, если значения двух переменных несопоставимы. Например, если вы сравниваете среднее число лейкоцитов в крови в выборке пациентов до и после лечения, но используете различные методы вычисления количественного показателя или другие единицы во втором измерении, то высоко значимые значения t-критерия могут быть получены искусственно, именно за счет изменения единиц измерения. Следующий набор данных может быть проанализирован с помощью t-критерия для зависимых выборок.

Число лейкоцитов в крови до Число лейкоцитов в крови после
наблюдение 1 наблюдение 2 наблюдение 3 наблюдение 4 наблюдение 5 . 111.9 109 143 101 80 . 113 110 144 102 80.9 .
средняя разность между числом лейкоцитов «до» и «после» = 1

Средняя разность между показателями в двух столбцах относительно мала ( d=1) по сравнению с разбросом данных (от 80 до 143, в первой выборке). Тем не менее t-критерийдля зависимых выборок использует только парные разности, «игнорируя» исходные численные значения и их вариацию. Таким образом, величина этой разности 1 будет сравниваться не с разбросом исходных значений, а с разбросом индивидуальных разностей, который относительно мал: 0.2 (от 0.9 в наблюдении 5 до 1.1 в наблюдении 1). В этой ситуации разность 1 очень большая и может привести к значимому t-значению. Матрицы t-критериев. t-критерий для зависимых выборок может быть вычислен для списков переменных и просмотрен далее как матрица. Пропущенные данные при этом обрабатываются либо построчно, либо попарно, точно так же как при вычислении корреляционных матриц. Все те предостережения, которые относились к использованию этих методов обработки пропусков при вычислении матриц коэффициентов корреляций, остаются в силе при вычислении матриц t-критериев. Именно, возможно: появление артефактов (искусственных результатов) из-за попарного удаления пропусков в t-критерии и возникновение чисто «случайно» значимых результатов.

Читайте также:  Третья лига 2021 2022 Футбол Германия

Глава 4. Непараметрические критерии

Во многих случаях становится необходимым использование статистических процедур, позволяющих обрабатывать данные «низкого качества» из выборок малого объема с переменными, про распределение которых мало что или вообще ничего не известно. Непараметрические методы [10] как раз и разработаны для тех ситуаций, достаточно часто возникающих на практике, когда исследователь ничего не знает о параметрах исследуемой популяции (отсюда и название методов — непараметрические). Говоря более специальным языком, непараметрические методы не основываются на оценке параметров (таких как среднее или стандартное отклонение) при описании выборочного распределения интересующей величины. Поэтому эти методы иногда также называются свободными от параметров или свободно распределенными.

Источник

Оценка значимости по критериям Фишера и Стьюдента

После выбора уравнения линейной регрессии и оценки его параметров проводится оценка статистической значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения регрессии в целом осуществляется с помощью критерия Фишера, который называют также F-критерием. При этом выдвигается нулевая гипотеза ): коэффициент регрессии равен нулю (b = 0), следовательно, фактор х не оказывает влияния на результат у и линия регрессии параллельна оси абсцисс.

Перед тем как приступить к расчету критерия Фишера, проведем анализ дисперсии. Общую сумму квадратов отклонений у от можно разложить на сумму квадратов отклонений, объясненную регрессией и сумму квадратов отклонений, не объясненную регрессией:

где Σ(y — ) 2 — общая сумма квадратов отклонений значений результата от среднего по выборке; Σ(yx ) 2 — сумма квадратов отклонений, объясненная регрессией; Σ(y — ух) 2 — сумма квадратов отклонений, не объясненная регрессией, или остаточная сумма квадратов отклонений.

Общая сумма квадратов отклонений результативного признака у от среднего значения определяется влиянием различных причин. Условно всю совокупность причин можно разделить на две группы: изучаемый фактор х и прочие, случайные и не включаемые в модель факторы. Если фактор х не оказывает влияния на результат, то линия регрессии на графике параллельна оси абсцисс и = yх. Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадает с остаточной:

Σ(y — ) 2 = Σ(y — ух) 2 ,

Если же прочие факторы не влияют на результат, то у связан с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объясненная регрессией, совпадает с общей суммой квадратов:

Σ(y — ) 2 = Σ(yx ) 2

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс, обусловленный как влиянием фактора х, (регрессией у по х), так и действием прочих причин (необъясненная вариация). Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объясненную вариацию. Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат у. Это равносильно тому, что коэффициент детерминации R 2 будет приближаться к единице.

Любая сумма квадратов отклонений связана с числом степеней свободы df, т.е. с числом свободы независимого варьирования признака.

Для общей суммы квадратов Σ(y — ) 2 требуется (п-1) независимых отклонений, ибо в совокупности из п единиц после расчета среднего уровня свободно варьируют лишь (п-1) число отклонений.

При заданном наборе переменных у и х расчетное значение ух является в линейной регрессии функцией только одного параметра — коэффициента регрессии b. Таким образом, факторная сумма квадратов отклонений имеет число степеней свободы, равное единице. Число степеней свободы остаточной суммы квадратов при линейной регрессии составляет (п-2).

Существует равенство между числами степеней свободы общей, факторной и остаточной сумм квадратов.Запишем два равенства:

Σ(y — ) 2 = Σ(yx ) 2 + Σ(y — ух) 2 ,

n – 1 = 1 + (n – 2)

Разделив каждую сумму квадратов на соответствующее ей число степеней свободы, получим дисперсии на одну степень свободы:

Так как эти дисперсии рассчитаны на одну степень свободы, их можно сравнивать между собой. Критерий Фишера позволяет проверить нулевую гипотезу Н о том, что факторная и остаточная дисперсии на одну степень свободы равны между собой (Dфакт=Dост). Критерий Фишера рассчитывается по следующей формуле:

Если гипотеза Н подтверждается, то факторная и остаточная дисперсии одинаковы, и уравнение регрессии незначимо. Чтобы отвергнуть нулевую гипотезу и подтвердить значимость уравнения регрессии в целом, факторная дисперсия на одну степень свободы должна превышать остаточную дисперсию на одну степень свободы в несколько раз. Существуют специальные таблицы критических значений Фишера при различных уровнях надежности и степенях свободы. В них содержатся максимальные значения отношений дисперсий, при которых нулевая гипотеза подтверждается. Значение критерия Фишера для конкретного случая сравнивается с табличным, и на основе этого гипотеза Н принимается или отвергается.

Если Fфакт > Fтабл , тогда гипотеза Н отклоняется и делается вывод, что связь между у и х существенна и уравнение регрессии статистически значимо. Если Fфакт ≤ Fтабл , тогда гипотеза Н принимается и делается вывод, что уравнение регрессии статистически незначимо, так как существует риск (при заданном уровне надежности) сделать неправильный вывод о наличии связи между х и у.

Между критерием Фишера и коэффициентом детерминации существует связь, которая выражается следующей формулой для парной линейной регрессии:

В линейной регрессии часто оценивается не только значимость уравнения регрессии в целом, но и значимость его отдельных параметров, а также коэффициента корреляции.

Для того чтобы осуществить такую оценку, необходимо для всехпараметров рассчитывать стандартные ошибки (та , тb , тr):

Теперь нужно рассчитать критерии Стьюдента ta, tb, tr·. Для параметров а, b и коэффициента корреляции r критерий Стьюдента определяет соотношение между самим параметром и его ошибкой:

Фактические значения критерия Стьюдента сравниваются с табличными при определенном уровне надежности α и числе степеней свободы df= (п-2). По результатам этого сравнения принимаются или отвергаются нулевые гипотезы о несущественности параметров или коэффициента корреляции. Если фактическое значение критерия Стьюдента по модулю больше табличного, тогда гипотеза о несущественности отвергается. Подтверждение существенности коэффициента регрессии равнозначно подтверждению существенности уравнения регрессии в целом.

В парной линейной регрессии между критерием Фишера, критериями Стьюдента коэффициентов регрессии и корреляции существует связь.

На основании полученной связи можно сделать вывод, что статистическая незначимость коэффициента регрессии или коэффициента корреляции влечет за собой незначимость уравнения регрессии в целом, либо, наоборот, незначимость уравнения регрессии подразумевает несущественность указанных коэффициентов.

Читайте также:  Коэффициент уплотнения грунта при трамбовке песка таблица определения плотности

На основе стандартных ошибок параметров и табличных значений критерия Стьюдента можно рассчитать доверительные интервалы:

где Δa = tтабл·та — предельная ошибка параметра а; Δb = tтабл·тb — предельная ошибка коэффициента регрессии b.

Поскольку коэффициент регрессии имеет четкую экономическую интерпретацию, то доверительные границы интервала для него не должны содержать противоречивых результатов. Например, такая запись, как -5≤ b ≤ 10, указывает, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже нуль, а этого не может быть. Следовательно, связь между данными нельзя выразить такой моделью (в частности, парной линейной регрессией), должна подбираться другая модель.

Дата добавления: 2015-10-05 ; просмотров: 12996 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Таблица критических значений t-критерия Стьюдента

В таблице критических значений t-критерия Стьюдента находятся теоретические значения критерия.

df p=0,05 p=0,01 p=0,001
1 12,70 63,65 636,61
2 4,303 9,925 31,602
3 3,182 5,841 12,923
4 2,776 4,604 8,610
5 2,571 4,032 6,869
6 2,447 3,707 5,959
7 2,365 3,499 5,408
8 2,306 3,355 5,041
9 2,262 3,250 4,781
10 2,228 3,169 4,587
11 2,201 3,106 4,437
12 2,179 3,055 4,318
13 2,160 3,012 4,221
14 2,145 2,977 4,140
15 2,131 2,947 4,073
16 2,120 2,921 4,015
17 2,110 2,898 3,965
18 2,101 2,878 3,922
19 2,093 2,861 3,883
20 2,086 2,845 3,850
21 2,080 2,831 3,819
22 2,074 2,819 3,792
23 2,069 2,807 3,768
24 2,064 2,797 3,745
25 2,060 2,787 3,725
26 2,056 2,779 3,707
27 2,052 2,771 3,690
28 2,049 2,763 3,674
29 2,045 2,756 3,659
30 2,042 2,750 3,646
31 2,040 2,744 3,633
32 2,037 2,738 3,622
33 2,035 2,733 3,611
34 2,032 2,728 3,601
35 2,030 2,724 3,591
36 2,028 2,719 3,582
37 2,026 2,715 3,574
38 2,024 2,712 3,566
39 2,023 2,708 3,558
40 2,021 2,704 3,551
41 2,020 2,701 3,544
42 2,018 2,698 3,538
43 2,017 2,695 3,532
44 2,015 2,692 3,526
45 2,014 2,690 3,520
46 2,013 2,687 3,515
47 2,012 2,685 3,510
48 2,011 2,682 3,505
49 2,010 2,680 3,500
50 2,009 2,678 3,496
51 2,008 2,676 3,492
52 2,007 2,674 3,488
53 2,006 2,672 3,484
54 2,005 2,670 3,480
55 2,004 2,688 3,476
56 2,003 2,667 3,473
57 2,002 2,665 3,470
58 2,002 2,663 3,466
59 2,001 2,662 3,463
60 2,000 2,660 3,460
61 2,000 2,659 3,457
62 1,999 2,657 3,454
63 1,998 2,656 3,452
64 1,998 2,655 3,449
65 1,997 2,654 3,447
66 1,997 2,652 3,444
67 1,996 2,651 3,442
68 1,995 2,650 3,439
69 1,995 2,649 3,437
70 1,994 2,648 3,435
71 1,994 2,647 3,433
72 1,993 2,646 3,431
73 1,993 2,645 3,429
74 1,993 2,644 3,427
75 1,992 2,643 3,425
76 1,992 2,642 3,423
77 1,991 2,641 3,422
78 1,991 2,640 3,420
79 1,990 2,639 3,418
80 1,990 2,639 3,416
90 1,987 2,632 3,402
100 1,984 2,626 3,390
110 1,982 2,621 3,381
120 1,980 2,617 3,373
130 1,978 2,614 3,367
140 1,977 2,611 3,361
150 1,976 2,609 3,357
200 1,972 2,601 3,340
250 1,969 2,596 3,330
300 1,968 2,592 3,323
350 1,967 2,590 3,319

Вы просмотрели статью критерий стьюдента таблица.

Рассчитайте критерий Т-Стьюдента за 5 минут Онлайн сервис расчета статистики Провести расчеты

Источник

Критерий Фишера и Стьюдента

С помощью критерия Фишера оценивают качество регрессионной модели в целом и по параметрам.

Для этого выполняется сравнение полученного значения F и табличного F значения. F-критерия Фишера. F фактический определяется из отношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

критерий Фишера

где n — число наблюдений;

m — число параметров при факторе х.

F табличный — это максимальное значение критерия под влиянием случайных факторов при текущих степенях свободы и уровне значимости а.

Уровень значимости а — вероятность не принять гипотезу при условии, что она верна. Как правило а принимается равной 0,05 или 0,01.

Если Fтабл > Fфакт то признается статистическая незначимость модели, ненадежность уравнения регрессии.

Таблицы по нахождению критерия Фишера и Стьюдента

Таблицы значений F-критерия Фишера и t-критерия Стьюдента Вы можете посмотреть здесь.

Табличное значение критерия Фишера вычисляют следующим образом:

  1. Определяют k1, которое равно количеству факторов (Х). Например, в однофакторной модели (модели парной регрессии) k1=1, в двухфакторной k=2.
  2. Определяют k2, которое определяется по формуле n — m — 1, где n — число наблюдений, m — количество факторов. Например, в однофакторной модели k2 = n — 2.
  3. На пересечении столбца k1 и строки k2 находят значение критерия Фишера

Для нахождения табличного значения критерия Стьюдента определяют число степеней свободы, которое определяется по формуле n — m — 1 и находят его значение при определенном уровне значимости (0,10, 0,05, 0,01).

Критерии Стьюдента

Для оценки статистической значимости модели по параметрам рассчитывают t-критерии Стьюдента.

Оценка значимости модели с помощью критерия Стьюдента проводится путем сравнения их значений с величиной случайной ошибки:

t-критерии Стьюдента

Случайные ошибки коэффициентов линейной регрессии и коэффициента корреляции определяются по формулам:

Случайные ошибки коэффициентов линейной регрессии

Сравнивая фактическое и табличное значения t-статистики и принимается или отвергается гипотеза о значимости модели по параметрам.

Зависимость между критерием Фишера и значением t-статистики Стьюдента определяется так

Зависимость между критерием Фишера и значением t-статистики Стьюдента

Как и в случае с оценкой значимости уравнения модели в целом, модель считается ненадежной если tтабл > tфакт

Видео лекциий по расчету критериев Фишера и Стьюдента

Для более подробного изучения расчетов критериев Фишера и Стьюдента советуем посмотреть это видео

Лекция 1. Критерии и Гипотезы

Лекция 2. Критерии и Гипотезы

Лекция 3. Критерии и Гипотезы

Определение доверительных интервалов

Для построения доверительного интервала определяется предельная ошибка А для обоих показателей:

предельная ошибка А

Формулы для нахождения доверительных интервалов выглядят так

доверительный интервал

Прогнозное значение у определяется с помощью подстановки в
уравнение регрессии прогнозного значения х. Вычисляется средняя стандартная ошибка прогноза

средняя стандартная ошибка прогноза

и находится доверительный интервал

Задача регрессионного анализа в предмете эконометрика состоит в анализе дисперсии изучаемого показателя y:

дисперсия изучаемого показателя y

общая сумма квадратов отклоненийобщая сумма квадратов отклонений (TSS)

сумма квадратов отклонений, обусловленная регрессиейсумма квадратов отклонений, обусловленная регрессией (RSS)

остаточная сумма квадратов отклоненийостаточная сумма квадратов отклонений (ESS)

Долю дисперсии, обусловленную регрессией, в общей дисперсии показателя у характеризует коэффициент детерминации R, который должен превышать 50% (R 2 > 0,5). В контрольных по эконометрике в ВУЗах этот показатель рассчитывается всегда.

коэффициент детерминации

Любые задачи по эконометрике решаются здесь

Источник