Меню

Параметры цилиндрической зубчатой передачи таблица



Справочные таблицы для расчета зубчатых передач

Модули для зубчатых колес

0,25 (0,7) (1,75) 3 (5,5) 10 (18) 32
0,3 0,8; (0,9) 2 (3,5) 6 (11) 20 (36)
0,4 1; (1,125) (2,25) 4 (7) 12 (22) 40
0,5 1,25 2,5 (4,5) 8 (14) 25 (45)
0,6 1,5 (2,75) 5 (9) 16 (28) 50

Допускается применение модулей 3,25; 3,75 и 4,25 мм для автомобильной промышленности и модуля 6,5 мм для тракторной промышленности
Распространяется на модули зубчатых колес цилиндрических, конических и червячных с цилиндрическим червяком.
Для цилиндрических колес с косым и шевронным зубом модуль определяется по нормальному шагу. В исключительных обоснованных случаях допускается определение модуля в торцовом сечении.
Для конических зубчатых колес модуль определяется по большему диаметру.
Для червячных колес с цилиндрическим червяком модуль определяется в осевом сечении червяка.
Значения модулей заключенные в скобки применять не рекомендуется

Основные параметры зубчатых цилиндрических передач

Стандарт распространяется на цилиндрические передачи внешнего зацепления для редукторов и ускорителей, в том числе и комбинированных (коническо-цилиндрических, цилиндро-червячных и др.), выполняемых в виде самостоятельных агрегатов.
Стандарт не распространяется на передачи редукторов специального назначения и специальной конструкции
Для встроенных передач стандарт является рекомендуемым

Межосевые расстояния

1 ряд 40 50 63 80 100 125 160 200 250 315 400
2 ряд 140 180 225 280 355
1 ряд 500 630 800 1000 1250 1600 2000 2500
2 ряд 450 560 710 900 1120 1400 1800 2240

1-й ряд следует предпочитать 2-му

Номинальные передаточные числа

1 ряд 1,0 1,25 1,6 2,0 2,5 3,15
2 ряд 1,12 1,4 1,8 2,24 2,8
1 ряд 4,0 5,0 6,3 8,0 10 12,5
2 ряд 3,55 4,5 5,6 7,1 9,0 11,2

1-й ряд следует предпочитать 2-му
Фактические значения передаточных чисел не должны отличаться от номинальных более чем на 2,5% при номинальном меньше 4,5 и на 4% при номинальном больше 4,5

Коэффициент ширины зубчатых колес (отношение ширины зубчатого колеса к межосевому расстоянию) должен соответствовать:
0,100; 0,125; 0,160; 0,200; 0,315; 0,400; 0,500; 0,630; 0,800; 1,0; 1,25

Численные значения ширины зубчатых колес округляются до ближайшего числа из ряда Ra20 по ГОСТу 6636

При различной ширине сопряженных зубчатых колес значение коэффициента ширины зубчатых колес относится к более узкому из них

Коэффициент запаса прочности при работе зуба двумя сторонами

например: зубья реверсивных передач или зубья сателлитов в планетарных передачах

Материал колес и термо-
обработка
Отливки стальные и чугунные без термо-
обработки
Отливки стальные и чугунные с термо-
обработкой
Поковки стальные нормали-
зованные или улучшенные
Поковки и отливки стальные с поверх-
ностной закалкой (сердцевина вязкая)
Стальные, нормали-
зованные или улучшенные, а также с поверх-
ностной закалкой
Стальные с объемной закалкой Стальные, подверг-
нутые цементации, азоти-
рованию, циани-
рованию и др.
Чугунные и пласт-
массовые колеса
Коэфф. 1,9 1,7 1,5 2,2 1,4 — 1,6 1,8 1,2 1 — 1,2

Межосевые расстояния для двухступенчатых несоосных редукторов общего назначения

Быстроходная ступень 40 50 63 80 100 125 140 160 180 200 225 250 280 315
Тихоходная ступень 63 80 100 125 160 200 225 250 280 315 355 400 450 500
Быстроходная ступень 355 400 450 500 560 630 710 800 900 1000 1120 1250 1400 1600
Тихоходная ступень 560 630 710 800 900 1000 1120 1250 1400 1600 1800 2000 2240 2500

Межосевые расстояния для трехступенчатых несоосных редукторов общего назначения

Быстроходная ступень 40 50 63 80 100 125 140 160 180 200
Промежуточная ступень 63 80 100 125 160 200 225 250 280 315
Тихоходная ступень 100 125 160 200 250 315 355 400 450 500
Быстроходная ступень 225 250 280 315 355 400 450 500 560 630
Промежуточная ступень 355 400 450 500 560 630 710 800 900 1000
Тихоходная ступень 560 630 710 800 900 1000 1120 1250 1400 1600

Общие передаточные числа для двухступенчатых редукторов

1 ряд 6,3 8,0 10 12,5 16
2 ряд 7,1 9,0 11,2 14 18
1 ряд 20 25 31,5 40 50
2 ряд 22,4 28 35,5 45 56

Основные параметры конических зубчатых передач

Стандарт распространяется на конические передачи с углом пересечения осей, равным 90°, для редукторов (и ускорителей), в том числе и комбинированных (коническо-цилиндрических и др.), выполняемых в виде самостоятельных агрегатов.
Стандарт не распространяется на передачи редукторов специального назначения и специальной конструкции (авиационные, автомобильные, тракторные).
Для встроенных передач стандарт является рекомендуемым

Номинальные диаметры основания делительного конуса большего колеса должны соответствовать:
50, (56), 63, (71), 80, (90), 100, (112), 125, (140), 160, (180), 200, (225), 250, 280, 315, 355, 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1600
Номинальные диаметры заключенные в скобки, по возможности не применять

Номинальные передаточные числа

1 ряд 1,0 1,25 1,6 2,0 2,5 3,15 4,0 5,0 6,3
2 ряд 1,12 1,4 1,8 2,24 2,8 3,55 4,5 5,6

Передаточные числа 2-го ряда по возможности не применять
Фактические значения передаточных чисел не должны отличаться от номинальных более чем на 3%

Ширина зубчатых колес

Ширину зубчатых колес b выбирают
b = ψ l l = (0,25 ÷ 0,30) l
где ψ l — коэффициент длины зуба
l — длина образующей делительного конуса

Источник

Черчение

Home Машиностроение Механические передачи Зубчатые передачи

Зубчатые передачи

Зубчатой передачей называется меха­низм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.

Зубчатое колесо, сидящее на передающем вращение валу, называется веду­щим, а на получающем вращение — ведомым. Меньшее из двух колес со­пряженной пары называют шестерней; большее — колесом; тер­мин «зубчатое колесо» относится к обеим деталям передачи.

Читайте также:  Как собрать кубик Рубика 3х3 Самая легкая схема для начинающих

Зубчатые передачи представляют собой наиболее распространенный вид передач в современном машиностроении. Они очень надежны в работе, обеспечивают постоянство передаточного числа, компактны, имеют высо­кий КПД, просты в эксплуатации, долговечны и могут передавать любую мощность (до 36 тыс. кВт).

К недостаткам зубчатых передач следует отнести: необходимость высо­кой точности изготовления и монтажа, шум при работе со значительными скоростями, невозможность бесступенчатого изменения передаточного числа.

В связи с разнообразием условий эксплуатации формы элементов зубча­тых зацеплений и конструкции передач весьма разнообразны.

Зубчатые передачи классифицируются по признакам, приведенным ниже.

  1. По взаимному расположению осей колес: с па­раллельными осями (цилиндрическая передача — рис. 172, I—IV); с пере­секающимися осями (коническая передача — рис. 172, V, VI); со скрещива­ющимися осями (винтовая передача — рис. 172, VII; червячная передача — рис. 172, VIII).
  2. В зависимости от относительного вращения колес и расположения зубьев различают передачи с внеш­ним и внутренним зацеплением. В первом случае (рис. 172, I—III) враще­ние колес происходит в противоположных направлениях, во втором (рис. 172, IV) — в одном направлении. Реечная передача (рис. 172, IX) служит для преобразования вращательного движения в поступательное.
  3. По форме профиля различают зубья эвольвентные (рис. 172, I, II) и неэвольвентные, например цилиндрическая передача Новикова, зу­бья колес которой очерчены дугами окружности.
  4. В зависимости от расположения теоретичес­кой линии зуба различают колеса с прямыми зубьями (рис. 173, I), косыми (рис. 173, II), шевронными (рис. 173, III) и винтовыми (рис. 173, IV). В непрямозубых передачах возрастает плавность работы, уменьшается износ и шум. Благодаря этому непрямозубые передачи большей частью применяют в установках, требующих высоких окружных скоростей и пере­дачи больших мощностей.
  5. По конструктивному оформлению различают закры­тые передачи, размещенные в специальном непроницаемом корпусе и обес­печенные постоянной смазкой из масляной ванны, и открытые, работаю­щие без смазки или периодически смазываемые консистентными смазками (рис. 174).
  6. По величине окруж­ной скорости различают: тихо­ходные передачи (v равной до 3 м/с), среднескоростные (v равной от 3. 15 м/с) и быстроходные (v более 15 м/с).

Основы теории зацепления

Боковые грани зубьев, соприкасаю­щиеся друг с другом во время враще­ния колес, имеют специальную кри­волинейную форму, называемую про­филем зуба. Наиболее распространен­ным в машиностроении является эвольвентный профиль (рис. 175).

Придание профилям зубьев зубча­тых зацеплений таких очертаний не является случайностью. Чтобы зубья двух колес, находящихся в зацепле­нии, могли плавно перекатываться один по другому, необходимо было вы­брать такой профиль для зубьев, при котором не происходило бы перекосов и защемления головки одного зуба во впадине другого.

На рис. 176 изображена пара зубчатых колес, находящихся в зацепле­нии. Линия, соединяющая центры колес О1 и О2 называется линией центров или межосевым расстоянием — aw.

Точка Р касания начальных окружностей dW1 и dW2 — полюс — все­гда лежит на линии центров. Начальными называются окружнос­ти, касающиеся друг друга в полюсе зацепления, имеющие общие с зуб­чатыми колесами центры и перекатывающиеся одна по другой без сколь­жения.

Если проследить за движением пары зубьев двух колес с момен­та, когда они впервые коснутся друг друга до момента, когда они выйдут из зацепления, то ока­жется, что все точки касания их в процессе движения будут лежать на одной прямой NN. Прямая NN, проходящая через полюс за­цепление Р и касательная к ос­новным* окружностям db1, db2, двух сопряженных колес, назы­вается линией зацепле­ния. Отрезок ga линии зацепле­ния, отсекаемый окружностями выступов сопряженных колес, — активная часть линии зацепле­ния, определяющая начало и ко­нец зацепления пары сопряжен­ных зубьев.

Линия зацепления представ­ляет собой линию давления со­пряженных профилей зубьев в процессе эксплуатации зубча­той передачи.

Угол ?w между линией зацеп­ления и перпендикуляром к ли­нии центров O1О2 называется углом зацепления. В основу профилирования эвольвентных зубьев и инструмента для их на­резания положен стандартный по ГОСТ 13755-81 исходный контур так называемой рейки, равный 20°.

Во время работы цилиндри­ческой прямозубой передачи сила давления Рn ведущей шес­терни O1 в начале зацепления передается ножкой зуба на со­пряженную боковую поверх­ность (контактную линию) головки ведомого колеса О2. Чем больше пара зубьев одновременно находится в зацеплении, тем более плавно работает передача, тем меньшую нагрузку воспринимает на себя каждый зуб.

Стремление сделать зубчатую передачу более компактной вызывает не­обходимость применять зубчатые колеса с возможно меньшим числом зубь­ев. Изменение количества зубьев зубчатого колеса влияет на их форму (рис. 177). При увеличе­нии числа зубьев до бесконечно­сти колесо превращается в рейку и зуб приобретает пря­молинейное очертание. С умень­шением числа зубьев одновре­менно уменьшается толщина зу­ба у основания и вершины, а так­же увеличивается кривизна эвольвентного профиля, что приводит к уменьшению проч­ности зуба на изгиб. При умень­шении числа зубьев, когда z

На практике подрезку зубьев предотвращают прежде всего выбором со­ответствующего числа зубьев. Наименьшее число зубьев (zmin), при кото­ром еще не происходит подрезание, рекомендуется выбирать от 35 до 40 при равном 15° и от 18 до 25 при ?w равном 20°.

В отдельных случаях приходится выполнять передачу с числом зубьев меньшим, чем рекомендуется, при этом производят исправление, или, как говорят, корригирование формы зубьев. Один из таких способов заключает­ся в изменении высоты головки и ножки зуба до ha = 0,8m; hf = m. Этот спо­соб исключает подрезку, но увеличивает износ зубьев.

Теперь обратимся к изложению основной теоремы зацепления: общая нормаль (линия зацепления NN) к сопряженным профилям зубьев делит межосевое расстояние ( ?w= О1О2) на отрезки (О1Р и 02Р), обратно пропор­циональные угловым скоростям (w1 и w2). Если положение точки Р (полю­са зацепления) неизменно в любой момент зацепления, то передаточное от­ношение — отношение частоты вращения ведущего колеса к частоте враще­ния ведомого — будет постоянным.

4.3. Основные элементы зубчатых зацеплений. При изменении осевого расстояния ?w = О1О2 пары зубчатых колес будет меняться и положение по­люса зацепления Р на линии центров, а следовательно, и величина диаметров начальных окружностей, то есть у пары сопряженных зубчатых колес может быть бесчисленное множество начальных окружностей. Следует отметить, что понятие начальные окружности относится лишь к паре со­пряженных зубчатых колес. Для отдельно взятого зубчатого колеса нельзя говорить о начальной окружности.

Читайте также:  Презентация на тему ОСОБЕННОСТИ ГЕОГРАФИЧЕСКОГО ПОЛОЖЕНИЯ САНКТ ПЕТЕРБУРГА

Если заменить одно из колес зубчатой рейкой, то для каждого зубчатого колеса найдется только одна окружность, катящаяся по начальной прямой рейке без скольжения, — эта окружность называется делительной.

Примечание. В настоящей книге рассматриваются зубчатые передачи, у которых на­чальные и делительные окружности совпадают.

Так как у каждого зубчатого колеса имеется только одна делительная ок­ружность, то она и положена в основу определения основных параметров

зубчатой передачи по ГОСТ 16530- 83 и ГОСТ 16531-83 (рис. 178)

Основные параметры зубчатых колес:

1. Делительными окружностя­ми пары зубчатых колес называ­ются соприкасающиеся окружно­сти, катящиеся одна по другой без скольжения. Эти окружности, на­ходясь в зацеплении (в передаче), являются сопряженными. На чер­тежах диаметр делительной ок­ружности обозначают буквой d.

2. Окружной шаг зубьев Рt — расстояние (мм) между одноимен­ными профильными поверхностя­ми соседних зубьев. Шаг зубьев, как нетрудно представить, равен делительной окружности, разде­ленной на число зубьев z.

3. Длина делительной окруж­ности. Модуль. Длину делитель­ной окружности можно выразить через диаметр и число зубьев: Пd = Pt • r. Отсюда диаметр делитель­ной окружности d = (Рt • z)/П.

Отношение Pt/П называется модулем зубчатого зацепления и обозначается буквой т. Тогда диаметр дели­тельной окружности можно выразить через модуль и число зубьев d = m • z. Отсюда m = d/z.

Значение модулей для всех передач — вели­чина стандартизированная.

Для понимания зависимости между вели­чинами Рt т и d приведена схема на рис. 178, II, где условно показано размещение всех зубь­ев 2 колеса по диаметру ее делительной окруж­ности в виде зубчатой рейки.

4. Высота делительной головки зуба ha — расстояние между делительной окружностью колеса и окружностью вершин зубьев.

5. Высота делительной ножки зуба hf — расстояние между делительной окружностью колеса и окружностью впадин.

6. Высота зуба h — расстояние между ок­ружностями вершин зубьев и впадин цилинд­рического зубчатого колеса h = ha + hf..

7. Диаметр окружности вершин зубьев da — диаметр окружности, ограничивающей вершины головок зубьев.

8. Диаметр окружности впадин зубьев df — диаметр окружности, прохо­дящей через основания впадин зубьев.

При конструировании механизма конструктор рассчитывает величину модуля т для зубчатой передачи и, округлив, подбирает модуль по таблице стандартизированных величин. Затем он определяет величины остальных геометрических элементов зубчатого колеса.

Зубчатые передачи с зацеплением M.Л. Новикова

В этом зацепле­нии профиль зубьев выполняется не по эвольвенте, а по дуге окружности или по кривой, близкой к ней (рис. 179).

При зацеплении выпуклые зубья одного из колес контактируют с вогнуты­ми зубьями другого. Поэтому площадь соприкосновения одного зуба с другим в передаче Новикова значительно больше, чем в эвольвентных передачах. Касание сопряженных профилей теоретически происходит в точке, поэтому данный вид зацепления называют точечным.

При одинаковых с эвольвентным зацеплением параметрах точечная систе­ма зацепления с круговым профилем зуба обеспечивает увеличение контакт­ной прочности, что в свою очередь позволяет повысить нагрузочную способ­ность передачи в 2. 3 раза по сравнению с эвольвентной. Взаимодействие зу­бьев в сравниваемых передачах также различно: в эвольвентном зацеплении преобладает скольжение, а в зацеплении Новикова — качение. Это создает благоприятные условия для увеличения масляного слоя между зубьями, уменьшения потерь на трение и увеличения сопротивления заеданию.

К достоинствам зацепления Новикова относятся возможность примене­ния его во всех видах зубчатых передач: с параллельными, пересекающи­мися и скрещивающимися осями колес, с внешним и внутренним зацепле­нием, постоянным и переменным передаточным отношением. Потери на трение в этой системе зацепления примерно в 2 раза меньше потерь в эвольвентном зацеплении, что увеличивает КПД передачи.

К основным недостаткам передач с зацеплением Новикова относятся: технологическая трудоемкость изготовления колес, ширина колес должна быть не менее 6 модулей и др. В настоящее время передачи с зацеплением Новикова находят применение в редукторах больших размеров.

Источник

Параметры цилиндрической зубчатой передачи таблица

Цилиндрические зубчатые передачи.

Расчет геометрических параметров

Термины и обозначения приведены в табл. 1, определения терминов см. ГОСТ 16530—83 и 16531-83.

1. Термины и обозначения цилиндрических зубчатых передач

Делительное межосевое расстоя­ние — a

Межосевое расстояние — aw

Ширина венца цилиндрического зубчатого колеса — b

Рабочая ширина венца зубчатой передачи — bw

Радиальный зазор пары исходных контуров — c

Коэффициент радиального зазора нормального исходного контура – c*

Высота зуба цилиндрического зубчатого колеса — h

Высота делительной головки зуба цилиндрического зубчатого колеса — ha

Коэффициент высоты головки исходного контура – ha *

Высота до хорды зуба колеса — h a

Высота до постоянной хорды зуба — h c

Высота до хорды дуги окруж­ности — h ay

Глубина захода зубьев колеса, а также глубина захода зубьев ис­ходных реек — h d

Высота делительной ножки зуба колеса — hf

Граничная высота зуба колеса — hl

Делительный диаметр зубчатого колеса — d

Диаметр вершин зубьев колеса — da

Основной диаметр зубчатого ко­леса — db

Диаметр впадин зубчатого колеса — df

Диаметр окружности граничных точек зубчатого колеса — dl

Начальный диаметр зубчатого ко­леса — dw

Радиус зубчатого колеса — r

Расчетный модуль цилиндриче­ского зубчатого колеса — m

Нормальный модуль зубьев — mn

Окружной модуль зубьев (торцо­вый) — mt

Шаг эвольвентного зацепления — pb

Нормальный шаг зубьев рейки — pn

Торцовый шаг зубьев рейки — pt

Осевой шаг зубьев рейки — px

Основной нормальный шаг зубьев — pbn

Основной окружной шаг зубьев — pbt

Основная нормальная толщина зуба — sbn

Постоянная хорда зуба — s c

Нормальная толщина зуба рейки — sn

Осевая толщина зуба рейки — sx

Торцовая толщина зуба рейки — st

Толщина по хорде зуба — s

Окружная толщина на заданном диаметре dy — sty

Толщина по хорде — s y

Длина обшей нормали зубчатого колеса — W

Коэффициент смещения исход­ного контура — x

Коэффициент наименьшего сме­щения исходного контура — xmin

Коэффициент суммы смещений хΣ

Коэффициент воспринимаемого смещения — у

Коэффициент уравнительного смещения — Δу

Число зубьев зубчатого колеса (число зубьев секторно -зубчатого колеса) — z

Наименьшее число зубьев, сво­бодное от подрезания — zmin

Число зубьев в длине обшей нор­мали — zw

Нормальный боковой зазор эвольвентной цилиндрической зубчатой передачи — jn

Эвольвентный угол профиля зуба – inv a

Эвольвентный угол, соответст­вующий точке профиля на окруж­ности dy – inv ay

Читайте также:  Критерии оценки качества работы учителя

Частота вращения зубчатого колеса в минуту — n

Угол профиля зуба исходного кон­тура в нормальном сечении — a

Угол профиля зуба в торцовом сечении — at

Угол зацепления — atw

Угол профиля в точке на концен­трической окружности заданного диаметра dy — ay

Угол наклона линии зуба соосной цилиндрической поверхности диа­метра dy — βy

Угол наклона линии зуба — β

Основной угол наклона линии зуба (косозубого колеса на его основ­ном цилиндре) — βb

Угол развернутости эвольвенты зуба — v

Половина угловой толщины зуба — ψ

Половина угловой толщины зуба эквивалентного зубчатого колеса, соответствующая концентрической окружности диаметра dy /cos 2 βy — ψyv

Угловая скорость — ω

Шестерня — зубчатое колесо передачи с меньшим числом зубьев, колесо — с боль­шим числом зубьев. При одинаковом числе зубьев зубчатых колес передачи шестерней называют ведущее зубчатое колесо, а коле­сом — ведомое. Индекс 1 — для величин, относящихся к шестерне, индекс 2 — относя­щихся к колесу.

Рис. 1. Исходный контур зубчатых цилиндрических колес эвольвентного зацепления по ГОСТ 13755-81 и конических колес с прямыми зубьями по ГОСТ 13754-81

Индекс n — для величин, относящихся к нормальному сечению, t — к окружному (торцовому) сечению. В тех случаях, когда не может быть разночтения и неясности, индексы n и t можно исключить.

Термины параметров нормального ис­ходного контура и нормального исходного производящего контура, выраженных в до­лях модуля нормального исходного контура, образуют добавлением слова «коэффициент» перед термином соответствующего парамет­ра.

Обозначения коэффициентов соответст­вуют обозначениям параметров с добавлением знака «*», например коэффициент радиального зазора пары исходных контуров с *.

Модули (по ГОСТ9563—60). Стандарт распространяется на эвольвентные цилинд­рические зубчатые колеса и конические зубчатые колеса с прямыми зубьями и устанав­ливает:

для цилиндрических колес — значения нормальных модулей;

для конических колес — значения внеш­них окружных делительных модулей.

Числовые значения модулей:

1. При выборе модулей ряд 1 следует предпочитать ряду 2.

2. Для цилиндрических зубчатых колес допускается:

а) в тракторной промышленности при­менение модулей 3,75; 4,25 и 6,5мм;

б) в автомобильной промышленности применение модулей, отличающихся от ус­тановленных в настоящем стандарте;

в) в редукторостроении применение мо­дулей 1,6; 3,15; 6,3; 12,5м.

3. Для конических зубчатых колес до­пускается:

а) определять модуль на среднем конус­ном расстоянии;

б) в технически обоснованных случаях применение модулей, отличающихся от ука­занных в таблице.

4. Стандарт предусматривает применение модулей в диапазоне значений от 0,05 до 100мм.

Исходный контур цилиндрических зубча­тых колес. Под исходным контуром колес (рис. 1) подразумевают контур зубьев рейки в нормальном к направлению зубьев сечении. Радиальный зазор с = 0,25m, радиус кривизны переходной кривой зуба pf = 0.4m. Допускается увеличение радиуса рfесли это не нарушает правильности зацепления, и увеличение с до 0,35m при обработке колес долбяками и шеверами и до 0,4m при шлифовании зубьев.

Для цилиндрических колес внешнего зацепления при окружной скорости более указанной в табл. 2 применяют исходный контур с модификацией профиля головки зуба (рис. 2). При этом линия модификации — прямая, коэффициент модификации hg * должен быть не более 0,45, а коэффициент глубины модификации Δ* — не более 0,02.

Рекомендуемые значения коэффициента Δ* приведены в табл. 3.

Основные элементы зубчатого зацепле­ния указаны на рис. 3 и 4 в соответствии с обозначением по табл. 1.

Смещение колес зубчатых передач с внешним зацеплением. Чтобы повысить прочность зубьев на изгиб, снизить кон­тактные напряжения на их поверхности и уменьшить износ за счет относительного скольжения профилей, рекомендуется про­изводить смешение инструмента для цилин­дрических (и конических) зубчатых передач, у которых z1 ≠ z2. Наибольший результат достигается в следующих случаях:

Рис. 2. Исходный контур с профильной модификацией

2. Окружная скорость колес в зависимости от их точности

Окружная скорость в м/ с при степени точности колеса по ГОСТ 1643-81

Источник

Параметры цилиндрической зубчатой передачи таблица

ГОСТ 2185-66*
(СТ СЭВ 229-75)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПЕРЕДАЧИ ЗУБЧАТЫЕ ЦИЛИНДРИЧЕСКИЕ

Spur gearings. Basic parameters

Дата введения 1968-01-01

УТВЕРЖДЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 17 октября 1966 г. Срок введения установлен с 01.01.68

ПРОВЕРЕН в 1982 г.

* ПЕРЕИЗДАНИЕ (ноябрь 1993 г.) с Изменениями N 1, 2, 3, утвержденными в апреле 1978 г., июне 1982 г., декабре 1991 г. (ИУС 6-78, 10-82, 5-92)

1. Настоящий стандарт распространяется на цилиндрические передачи внешнего зацепления для редукторов и ускорителей, в том числе и комбинированных (коническо-цилиндрических, цилиндро-червячных и др.), выполняемых в виде самостоятельных агрегатов.

Стандарт не распространяется на передачи редукторов специального назначения и специальной конструкции (авиационные, судовые, планетарные и т.п.).

Для встроенных передач стандарт является рекомендуемым.

Стандарт полностью соответствует СТ СЭВ 229-75.

Требования настоящего стандарта, за исключением п.5, являются обязательными.

(Измененная редакция, Изм. N 1, 3).

2. Межосевые расстояния должны соответствовать указанным в табл.1.

3. Номинальные передаточные числа должны соответствовать указанным в табл.2.

1. 1-й ряд следует предпочитать 2-му.

2. Для изделий, производство которых освоено до 1 января 1978 г., допускается изготовление зубчатых передач с межосевым расстоянием 225 мм.

(Измененная редакция, Изм. N 1, 2).

1. 1-й ряд следует предпочитать 2-му.

2. В редукторах, которые должны быть кинематически согласованы между собой, допускается выбирать передаточные числа из ряда R40 по ГОСТ 8032-84.

3. Фактические значения передаточных чисел не должны отличаться от номинальных более чем на 2,5% при 4,5 и на 4% при 4,5.

4. Коэффициент ширины зубчатых колес ( — ширина венца цилиндрического зубчатого колеса) следует выбирать из ряда: 0,100; 0,125; 0,160; 0,200; 0,250; 0,315; 0,400; 0,500; 0,630; 0,800; 1,0; 1,25.

1. Численные значения ширины зубчатых колес округляются до ближайшего числа из ряда Ra 20 по ГОСТ 6636-69.

2. Ширина канавки для выхода режущего инструмента в шевронных зубчатых колесах включается в величину .

3. При различной ширине венцов сопряженных цилиндрических зубчатых колес значение относится к более узкому из них.

3, 4. (Измененная редакция, Изм. N 2).

5. Для двух- и трехступенчатых несоосных редукторов общего назначения рекомендуются отношения межосевых расстояний тихоходной ступени к быстроходной в пределах 1,25-1,4.

(Измененная редакция. Изм. N 3).

ПРИЛОЖЕНИЕ (Исключено, Изм. N 3).

Электронный текст документа

подготовлен ЗАО «Кодекс» и сверен по:

Источник