Меню

Приложение Г обязательное Допускаемые напряжения для материала болтов шпилек



Как рассчитывается прочность болтов

На каждый болт, изготовленный по установленным стандартам, наносится маркировка:

  • Фирменное клеймо предприятия изготовителя.
  • Класс прочности изделия.
  • Знак левой резьбы (при необходимости).

Класс прочности состоит из двух цифр разделенных точкой:

  • 1 — временное сопротивление, измеряется в Н/мм2.
  • 2 — это отношение предельной текучести относительно к его временному сопротивлению, измеряется в процентах. Предел текучести — предельная нагрузка, после ее превышения произойдет необратимая деформация детали.

Например, маркировка 9.8 обозначает:

  • 9Х100=900 Н/мм2 — временное сопротивление.
  • 9Х8х10=720 Н/мм2 — предел текучести.

Все болты с прочностью не меньше чем 800 Н/мм2, согласно международной классификации принято относить к высокопрочной группе. Это значит, что все изделия с маркировкой 8.8 и выше относятся к высокопрочной группе.

Что такое текучесть материала

Для наглядного примера понятия текучести металла можно взять два предмета кухонного инвентаря — вилку и нож. Изгибая вилку любом направлении мы деформируем изделие. Материал ложки всего-навсего изменил свою форму, изделие не сломалось — это говорит о высокой упругости материала, из которого изготовлена вилка. В данном примере прочность материала вилки значительно выше ее текучести.

Стальной нож при подобном воздействии сломается. У материала, из которого изготовлено это изделие, текучесть примерно одинакова с прочностью. Несмотря то, что нож изготовлен из прочной стали его в данном примере можно считать хрупким.

Другим примером из практики может послужить процесс вкручивания гайки в болт, который способен увеличить свою длину только при определенном воздействии на него. При чрезмерном усилии при закручивании гайки произойдет не увеличение длины болта, ка срыв резьбы на креплении.

Следующий показатель, используемый при расчете прочности болтов — процент удлинения. Он показывает длину деформированной детали до выхода ее со строя. Каждый болт в определенной степени можно считать гибким и способным удлиняться до определенного показателя не нарушая своих качеств. Измеряется этот показатель в процентах, на сколько может удлиняться деталь, по сравнению с первоначальными параметрами.

Твердость материала

По принятым правилам этот параметр для метизов измеряется в единицах по Бринеллю. Стали марок А2 и А4 имеющие прочность 50,70 и 80 и обозначаются через дефис, например А2-80. На все крепления, выполненные из нержавеющей стали так же наносится такая маркировка Значение твердости 70 самое распространенное, по нему можно судить о максимальной прочности крепления. Текучесть для болтов изготовленных из нержавеющей стали составляет для стали А2-70 — 250 Н/мм2, а для стали А4-80 — 300 Н/мм2. В таком случае увеличение будет не более 40%, это значит, что такие стали значительно изменяют свою форму перед окончательной деформацией.

Устаревшая система измерения (ГОСТ) не удела достаточного внимание нагрузкам на болтовые соединения. Именно по этой причине метизы, выпущенные до принятия международной классификации, были существенно ниже по качеству, чем современные. Пример расчета нагрузки на металл при использовании классификации прочности: Крепление М12, при прочности 8.8, с диаметром 10.7 мм, при максимальном сечении 89.97 мм2. Нагрузка на крепление будет равна (8Х8Х10)Х89,87=57520 Н.

Таблица предельных нагрузок для болтов изготовленных из углеродистых и нержавеющих сталей

Источник

Прочность болтов

Расчет нагрузки на болт

Маркировка головки болта обычно содержит следующие данные:

— клеймо завода изготовителя (JX, THE, L, WT, и т.п.);
— класс прочности;
— стрелка «против часовой стрелки» (если левая резьба).

Первая цифра обозначает номинальное временное сопротивление (предел прочности на разрыв): 1/100 Мпа (1/100 Н/мм 2 ;

1/10 кг/мм 2 ). Пример: (класс прочности 9.8) 9*10=900 Мпа (900 Н/мм 2 ; 91,71 кг/мм 2 ).

Вторая цифра обозначает процентное отношение предела текучести к временному сопротивлению (пределу прочности на разрыв): 1/10%. Пример: (класс прочности 9.8) 9*8=720 Мпа (720 Н/мм 2 ; 73,37 кг/мм 2 ).

Значение предела текучести — это максимально допустимая рабочая нагрузка болта, при превышении которой происходит невосстанавливаемая деформация. При расчётах нагрузки используют 1/2 или 1/3 от предела текучести, с двукратным или трёхкратным запасом прочности соответсвенно.

По действующей международной классификации к высокопрочным болтам относятся изделия, временное сопротивление которых больше или равно 800 Мпа (800 Н/мм 2 ; 81,52 кг/мм 2 ). Соответсвенно начиная с 8.8 для болтов и 8 для гаек.

Примеры текучести материала

Примером может послужить обычная кухонная вилка. Изогнув её в одном направлении, можно получить совершенно другой предмет, значит нарушилась ее текучесть, что привело к деформации. Материал при этом только деформировался, но не сломался, что свидетельствует о большой степени упругости стали. Вывод: максимальная прочность намного выше текучести.

Другое кухонное оборудование, например нож, сломается при попытках изменить его форму. Вывод: у ножа одинаковая сила текучести и прочности, такое изделие можно назвать хрупким, несмотря на то, что оно изготовлено из стали.

Читайте также:  Особенности утренней гимнастики дома

Аналогичным практическим примером может послужить вкручивание гайки: сам болт увеличивает длину только после определенного действия над ним. При неблагоприятном исходе эксперимента может состояться срыв резьбы на креплении.

Можно просмотреть тематический ролик, который покажет способ испытания болтов.

Процент удлинения — это среднестатистический показатель, который демонстрирует длину деформированной детали еще до начало поломки. Образно, можно называть такого рода болты гибкими, имея ввиду именно способность к удлинению.

Техническая терминология на этот счет довольно простая: относительное удлинение — это не что иное, как процент увеличения образца по сравнению с первоначальным размером.

Твердость материала

Твёрдость по Бринеллю – это характеристика, которая позволяет определить твёрдость материала.

Крепежи из нержавеющий стали тоже оснащены специальной маркировкой на верхушке крепления.

Вид стали А2 или А4 и предел прочности — 50, 70, 80, примеры: А2-70, А4-80. На крепления, которые имеют четко выраженную резьбу, наноситься цветная маркировка для A2 – зеленым цветом, для A4 – красным. Значение для предела текучести не указывается.

Например, значение 70 – самое стандартное и демонстрирует максимальную прочность крепежа из нержавеющей стали.

Максимальная текучесть для нержавеющих метизов, часто лишь справочное значение.

Текучесть в данном случае будет составлять 250 Н/мм2 для A2-70 и около 300 Н/мм2 для A4-80.

Приблизительное увеличение при этом будет не больше чем 40%. Иными словами, данный вид стали отменно меняет форму перед тем, как произойдёт непоправимая деформация.

Старые отечественные методы измерения по ГОСТ-у не позволяли уделить должное внимание максимально допустимым нагрузкам на болты, поэтому выпускаемые метизы были значительно ниже по качеству относительно современных.

Пример, чтобы максимально точно рассчитать нагрузку на материал, используя классификацию прочности:

Крепление М12 с прочностью 8.8 размером d2 = 10,7мм и максимально продолжительностью сечения 89,87мм2. В этом случае максимально допустимая степень нагрузки будет: (8*8*10)*89,87 ;0) = 57520 Ньютон.

Таблица нагрузок для болтов из углеродистой и из нержавеющей стали.

ST-4.6 ST-8.8 А2-70 А4-80
РЕЗЬБА d2, мм Площадь по 62, тт2 Макс. нагрузка, Ньютон Рабочая нагрузка, кг Макс. нагрузка, Ньютон Рабочая нагрузка, кг Макс. нагрузка, Ньютон Рабочая нагрузка, кг Макс. нагрузка, Ньютон Рабочая нагрузка, кг
М1 0,8 0,5 121 322 10 126 151
М2 1,7 2,27 544 20 1 452 70 567 20 681 30
М3 2,6 5,31 1 274 60 3 396 160 1 327 60 1 592 70
М4 3,5 9,62 2 308 110 6 154 300 2 404 120 2 885 140
М5 4,4 15,2 3 647 180 9 726 480 3 799 180 4 559 220
М6 5,3 22,05 5 292 260 14 112 700 5 513 270 6 615 330
М8 7,1 39,57 9 497 470 25 326 1 260 9 893 490 11 872 590
М10 8,9 62,18 14 923 740 39 795 1 980 15 545 770 18 654 930
М12 10,7 89,87 21 570 1 070 57 520 2 870 22 469 1 120 26 962 1 340
М14 12,6 124,63 29 910 1 490 79 761 3 980 31 157 1 550 37 388 1 860
М16 14,6 167,33 40159 2 000 107 092 5 350 41 833 2 090 50199 2 500
М20 18,3 262,89 63 093 3 150 168 249 8 410 65 722 3 280 78 867 3 940
М24 21,9 376,49 90 359 4 510 240 956 12 040 94 123 4 700 112 948 5 640
М27 24,9 486,71 116 810 5 840 311 493 15 570 121 677 6 080 146 012 7 300
М30 27,6 597,98 143 516 7170 382 708 19130 149 495 7 470 179 394 8 960

Дополненная таблица максимальных нагрузок на нержавеющие материалы и высокопрочные соединения.

Чтобы быть уверенным в безопасности нагрузки, можно без зазрения совести разделять нагрузку в Ньютонах на тридцать.

Источник

Приложение Г (обязательное). Допускаемые напряжения для материала болтов (шпилек)

Допускаемые напряжения для материала болтов (шпилек)

Номинальное допускаемое напряжение для болтов (шпилек) при затяжке и испытании вычисляют по формуле (Г.1) при температуре 20 °С.

Номинальное допускаемое напряжение для болтов (шпилек) в рабочих условиях вычисляют по формулам (Г.1), (Г.2), но не более номинального допускаемого напряжения при затяжке:

— если расчетная температура для болтов (шпилек) из углеродистых сталей не превышает 380 °С, низколегированных сталей — 420 °С, аустенитных сталей — 525 °С:

— если расчетная температура болтов (шпилек) из углеродистых сталей превышает 380 °С, низколегированных сталей — 420 °С, аустенитных сталей — 525 °С:

где n Т — коэффициент запаса по отношению к пределу текучести:

n Т = 2,6 — 2,8 — для углеродистых сталей, у которых / 0,7;

n Т = 2,3 — для углеродистых сталей, у которых / Т = 1,9 — для сталей аустенитного класса;

n D = 1,8 — коэффициент запаса прочности по пределу длительной прочности;

n п = 1,1 — коэффициент запаса прочности по пределу ползучести.

Допускаемые напряжения для болтов (шпилек) при затяжке в рабочих условиях и при расчете на условия испытания вычисляют по формулам:

где = 1,2 — коэффициент увеличения допускаемых напряжений при затяжке;

K у.р — коэффициент условий работы:

K у.р = 1,0 — для рабочих условий;

K у.р = 1,35 — для условий испытания;

K у.з — коэффициент условий затяжки:

K у.з = 1,0 — при обычной не контролируемой затяжке;

K у.з = 1,1 — при затяжке с контролем по крутящему моменту (см. приложение Л);

K у.з = 1,3 — при затяжке с помощью одновременной контролируемой вытяжке шпилек.

Рекомендуемые значения крутящих моментов при затяжке приведены в приложении Л;

K у.т — коэффициент учета нагрузки от температурных деформаций:

K у.т = 1,0 — если нагрузка от температурных деформаций не учитывается;

K у.т = 1,3 — при расчете фланцев с учетом нагрузки от температурных деформаций.

Номинальные допускаемые напряжения для болтов (шпилек) приведены в таблице Г.1.

Таблица Г.1 — Номинальные допускаемые напряжения для болтов (шпилек)

Расчетная температура болтов (шпилек), °С

Номинальное допускаемое напряжение для болтов (шпилек), МПа

Источник

Расчет резьбовых крепежных изделий при постоянных напряжениях

Болт поставлен без зазора в отверстие из-под развертки

39-1139-12

Силы, перпендикулярные к оси болта, вызывают срез. Условие прочности болта

38-1

где τср — расчетное напряжение на срез, Н/мм 2 ;
τср — (0,2 — 0,3)σt —допускаемое напряжение на срез;
σt — предел текучести материала болта, Н/мм 2
Q — сила, действующая на соединение, Н;
i — число плоскостей среза (на рисунке i = 1);
d б — диаметр ненарезанной части болта, мм.
Поверхности контакта соединяемых деталей и ненарезанной части болта проверяют на смятие:

39-1

σсм — расчетное напряжение смятия, Н/мм 2 ;
δ min — наименьшая толщина соединяемых деталей, находящихся в контакте с болтом мм;
[σ] см — допускаемое напряжение смятия, Н/мм 2 :
для стали углеродистой [σ] см — (0,8 — 1,0)σ т ;
для стали легированной [σ] см — (0,6 — 0,8)σ т
для чугуна [σ] см — (0,6 — 0,8)σ пчр

Расчет прецизионных (призонных) болтов, которые вставляют в конические отверстия

Болт, поставленный с зазором, воспринимает нагрузку, перпендикулярную к оси

39-31

Силу, с которой нужно затянуть болт — ее называют силой затяжки и определяют из условия, — чтобы не было сдвига деталей, т. е. чтобы сила трения Т на стыках соединяемых деталей была не меньше сдвигающей силы, обычно принимают с учетом запаса против сдвига деталей T = 1,2Q.

39-32

Для болта в данном соединении требуемая сила затяжки

40-1

где Q — сдвигающая сила;
i — число стыков ( i = 1);
f — коэффициент трения для стыка.
Для сухих обработанных стыков стальных или чугунных деталей
f = 0,10…0,15; то же при наличии масляной пленки f = 0,06.
В стыках стальных конструкций:
при пескоструйной обработке стыка f = 0,5;
при обработке пламенем газовой горелки f = 0,4;
при необработанных стыках (со следами окалины) f = 0,3;
при окраске алюминиевым порошком f = 015;
при окраске антикоррозионной краской f = 0,10;
при окраске свинцовым суриком f = 0,06

По найденной силе затяжки V рассчитывают болт на совместное действие растяжения и кручения. На практике влияние кручения для стандартных метрических резьб учитывают приближенно, вводя коэффициент 1,3. Тогда условие прочности

40-2

где F1 = πd 2 1/4 — площадь поперечного сечения по внутреннему диаметру резьбы, мм 2 ;
[σ]p = σ т/ [n] — допускаемое напряжение, Н/мм 2
σ т — предел текучести материала болта, Н/мм 2 ;
[n] — требуемый коэффициент запаса:
при контролируемой затяжке для болтов из углеродистой стали [n] = 1,6; для болтов из легированной стали [n] = 2
при неконтролируемой затяжке коэффициенты запаса [n] принимают в зависимости от диаметра резьбы:

Значения [n] при номинальном диаметре резьбы d, мм

Материал болтов Ø 6 — 16 Ø 16 — 30 Ø 30 — 60
Углеродистая сталь 5 — 4 4 — 2,5 2,5 — 1,7
Легированная сталь 6,5 — 5 5 — 3,3 3,3 — 3

На практике чаще приходится иметь дело с неконтролируемой затяжкой. Поэтому для затянутых болтов с резьбой от М6 до М48 при неконтролируемой затяжке подсчитаны допускаемые осевые нагрузки [Р], которые приведены в таблице

Допускаемые осевые нагрузки [P] в кН для затянутых болтов при неконтролируемой затяжке

Материал Ст 3 Сталь 35 Сталь 45 12ХН2 40Х
σ т, Н/мм 2 210 320 360 600 800
М6 0,80 1,20 1,35 1,75 2,30
М8 1,45 2,20 2,50 3,20 4,20
М10 2,55 3,90 4,40 5,50 7,30
М12 3,70 5,70 6,40 8,00 10,50
(М14) 5,75 8,80 9,90 13,00 17,50
М16 7,90 12,00 13,50 18,00 24,00
(М18) 9,60 14,50 16,50 22,00 29,50
М20 14,00 21,50 24,00 31,00 41,00
(М22) 20,00 31,00 35,00 43,00 58,00
М24 23,50 36,00 40,00 50,00 67,00
(М27) 37,00 56,00 63,00 80,00 105,00
М30 45,00 69,00 77,00 98,00 130,00
М36 73,00 110,00 125,00 145,00 195,00
М42 100,00 150,00 170,00 200,00 270,00
М48 130,00 235,00 255,00 275,00 365,00

Примечание. Размеры болтов, заключенные а скобки, применять не рекомендуется

Уточненный расчет

При более точных расчетах определяют эквивалентное напряжение

41-1

где, напряжение растяжения в поперечном сечении нарезанной части болта

41-2

наибольшее напряжение кручения в поперечном сечении нарезанной части болта

41-3

момент в резьбе

41-4

d2 — средний диаметр резьбы;
λ — угол подъема резьбы;
ρ ‘ — приведенный угол трения, определяемый из соотношения

41-5

f — коэффициент трения

41-6условный коэффициент трения между витками резьбы с углом профиля а или иначе приведенный коэффициент трения.

42-1

Болты клеммового (фрикционно — винтового) соединения

а — клемма с разрезной ступицей; б — клемма с разъемной ступицей

42-2

Эти болты также ставятся с зазором. Их затягивают так, чтобы момент трения М тр на стыке вала и клеммы был не меньше вращающего момента М; обычно принимают с учетом запаса сцепления М тр=1,2М

В общем случае клеммы могут быть нагружены одновременно осевой силой Q и вращающим моментом М. Клемма с разрезной ступицей менее удобна, чем клемма с разъемной ступицей. Последнюю можно устанавливать в любой части вала, не трогая насаженных на вал деталей.
Требуемая сила затяжки болтов клеммовых соединений зависит от принятого закона распределения давлений на поверхности контакта ступицы клеммы и вала. Наиболее неблагоприятной является посадка клеммы с большим зазором, когда контакт полуступиц с валом происходит по линиям; при затяжке болтов линейный контакт переходит в контакт по узкой площадке. При небольших зазорах, что соответствует в незатянутом состоянии посадкам h6 или g6, после затяжки закон распределения давлений оказывается близким к косинусоидальному. Наличие натяга в незатянутом соединении, что соответствует посадкам r6 или n6, обеспечивает после затяжки примерно равномерное распределение давлений

Рассматривается общий случай действия осевой силы Q и вращающего момента М. Расчет ведут либо по равнодействующей осевой и окружной сил, приведенной к поверхности контакта

43-2

либо отдельно по моменту М, стремящемуся повернуть клемму, и по силе Q, стремящейся сдвинуть клемму по валу.

Необходимая сила V затяжки болта

Клемма с разрезной ступицей и одним болтом (рис. а) Клемма с разъемной ступицей и двумя болтами (рис. б)
Контакт по узкой площадке 43-3 43-4
Посадка с малым зазором 43-5 43-6
Посадка с натягом 43-7 43-8

Винт нагружен осевой силой Q; возможно подтягивание под нагрузкой

Винты стяжных устройств работают на растяжение от внешних сил Q и на кручение от момента в резьбе М р

44-1

Расчет на прочность проводят по формуле

42-1

с заменой V на Q.

Болт с внецентренной растягивающей нагрузкой

При затяжке такой болт, имеющий эксцентричную или костыльную головку, испытывает растяжение, изгиб и кручение

45-2

Наибольшее суммарное нормальное напряжение

44-2

При значительных эксцентриситетах (е >0,1d) влияние кручения мало и его не учитывают. Тогда условие прочности

44-3

44-4

44-5

Изгиб болта (шпильки) может вызываться не только эксцентричностью нагружения, обусловленного формой головки болта, но и возникать из-за перекоса опорных поверхностей. Так, при перекосе торца гайки напряжения изгиба в поперечном сечении стержня шпильки

45-1

где Θ = Ml/EJ — угол перекоса в радианах;
Е — модуль продольной упругости материала шпильки;
d ст — диаметр стержня шпильки;
l — длина шпильки
Напряжения изгиба в поперечном сечении нарезанной части шпильки

45-4

Из формулы следует, что для уменьшения напряжений σ и‘ необходимо изготовлять шпильку с возможно меньшим диаметром стержня d

Затянутый болт дополнительно нагружается осевой нагрузкой

Крепление крышек двигателей внутреннего сгорания, автоклавов и сосудов, находящихся под внутренним давлением.
Болты такого соединения должны быть при монтаже затянуты так сильно, чтобы гарантировать герметичность после приложения осевой нагрузки.

При соединении стальных или чугунных деталей ориентировочный расчет болта можно проводить на растяжение силой
Р = 1,3Q
где Р — осевая сила, действующая на болт, от предварительной затяжки;
Q — внешняя осевая сила

Источник