Меню

Пример применения итерационной формулы Герона



Корень и его свойства

Тема в математике «Корень и его свойства» нередко вызывает затруднения у школьников, особенно при решении примеров. В данной статье описаны основные свойства корней, а также правила сложения, вычитания, умножения и деления. Наглядные примеры помогаю понять, как решать задания с корнями.

Определение «Корень»

Корень второй степени (квадратный корень) из числа a — это число, которое становится равным a, если число a возвести во вторую степень (в квадрат).
Например, √64 = 8 (√64 равно числу 8).

Число, стоящее под знаком корня, называется подкоренным числом. Если под знаком корня стоит целое выражение, то его называют подкоренным выражением.
Свойство квадратного корня: для действительных чисел не существует квадратный корень из отрицательного числа, так как возведение числа в квадрат будет всегда неотрицательным числом.

Извлечение корней: примеры

Извлечь корень — значит найти значение корня (то есть найти число, при возведении которого в степень, получается подкоренное значение).
Например, извлечь корень из 64 – значит найти √64.

Найти корень из числа можно одним из следующих способов:

  • Использование таблицы квадратов, таблицы кубов и т.д. В данном случае нужно просто найти нужное число в таблице и посмотреть, какому значению оно соответствует.
  • Разложение подкоренного выражения (числа) на простые множители.
    Порядок нахождения корня в этом случае будет следующим:
    1. Разложение подкоренного значения на простые множители,
    2. Объединение одинаковых множителей и их представление в виде степени с необходимым показателем.
    Например, √144 = √2х2х2х2х3х3 = √(2х2)х(2х2)х(3х3) = √2 2 х2 2 х3 2 = √12 2 = 12
    3. В случае, если невозможно найти корень из числа, то можно упростить подкоренное выражение (число). В этом случае применяется следующее правило: корень из произведения чисел равен произведению корней этих чисел.
    Например, √72 = √2х2х2х3х3 = √(2х2)х2х(3х3) = √2 2 х2х3 2 = √6 2 х2 = 6√2
  • Когда невозможно получить два одинаковых числа под знаком корня, это значит, что упростить такой корень нельзя.
    Например , √130=√13х5х2 – упростить нельзя.
  • Извлечение корня из дроби. В этом случае применяются следующие правила:
    1. дробное число должно быть записано в виде обыкновенной дроби;
    2 . корень из дроби равен частному от деления корня числителя на корень знаменателя.
    Например, √3,24 = √324/100 = √81/25 = √81 / √25 = 9/5 = 1,8.
  • Извлечение нечетной степени из отрицательных чисел. Чтобы извлечь корень нечетной степени из отрицательного числа необходимо извлечь его из положительного числа и поставить перед ним знак минус.
    Например, чтобы найти корень третьей степени из (-125), нужно найти корень третьей степени из 125 (будет 5) и подставить знак минуса (будет -5).

Приведение корней с разными показателями

Для того, чтобы упростить выражение с корнями, которое содержит корни разных степеней, необходимо привести все корни к одной степени.

Для этого воспользуемся следующим свойством дроби: a = n √a n .

Например, есть квадратный корень (второй степени √2 ) и кубический корень (третьей степени 3 √3).
Во-первых, необходимо найти наименьшее общее кратное (НОК) для степеней. В нашем примере НОК=6 (2х3).
Во-вторых, применим свойство a = n √a n : √2 = 2 √2 = 6 √2 3 = 6 √8; 3 √3 = 6 √3 2 = 6 √9
Получилось два корня одинаковой степени, с которыми можно совершать различные математические действия.

Корень: сложение и вычитание корней

Основное правила сложения и вычитания квадратных корней: сложение и вычитание квадратного корня возможны только при условии одинакового подкоренного выражения.

Примеры:
2√3 + 3√3 = 5√3
2√3 + 2√4 – не выполняется.

При этом, нужно рассмотреть возможность упростить выражения.
Пример: 2√3 + 3√12 = 2√3 + 3√2х2х3 = 2√3 + 3√ 2 2 х3 = 2√3 + 6√3 = 8√3.

Алгоритм действия:
1. Упростить подкоренное выражение путем разложения на простые множители.
2. Затем нужно извлечь корень из квадратного числа и записать полученное значение перед знаком корня.
3. После процесса упрощения необходимо подчеркнуть корни с одинаковыми подкоренными выражениями — только их можно складывать и вычитать.
4. У корней с одинаковыми подкоренными выражениями необходимо сложить или вычесть множители, которые стоят перед знаком корня. Подкоренное выражение остается без изменений. Нельзя складывать или вычитать подкоренные числа!

Читайте также:  Таблица вид транспорта преимущества недостатки крупные магистрали

Корень: умножение

Умножение корней без множителей

Произведение корней из чисел равно корню из произведения этих чисел.
√a*b=√a*√b
Важно: между собой можно умножать только одинаковые степени корней, то есть можно умножить один квадратный корень на другой, но нельзя умножить квадратный корень на корень кубической степени.
Примеры:
√2 х √3 = √6
√6 х √3 = √18 = √3х3х2 = 3√2

Умножение корней с множителями

При умножении корней с множителями нужно отдельно перемножить множители и подкорневые выражения (числа). Подкорневые числа можно перемножать между собой только в том случае, если они имеют одинаковые степени (см. умножение корней без множителей). В случае отсутствия множителя, он равен единице.
Примеры:
3√2 х √5 = (3х1) √(2*5) = 3√10
4√2 х 3√3 = (3х4) √(2х3) = 12√6

Корень: деление

Основной правило деления — подкоренные выражения делятся на подкоренные выражения, а множители на множители.
√a:b=√a:√b
В процессе деления квадратных корней дроби упрощаются.

Деление корней без множителей

Частное корней из чисел равно корню из частного этих чисел.
Важно: между собой можно делить только одинаковые степени корней, то есть можно делить один квадратный корень на другой, но нельзя делить квадратный корень на корень кубической степени.
Пример. √21:√3=√21:3=√7

Деление квадратных корней с множителями

При делении корней с множителями нужно отдельно разделить множители и подкорневые выражения (числа). Подкорневые числа можно делить между собой только в том случае, если они имеют одинаковые степени. В случае отсутствия множителя, он равен единице.
Пример. 12√32 : 6√16 = (12:6) √(32:16) = 2√2.

Примеры для практики

Чтобы попрактиковаться решать примеры на вычисление квадратный корней, можно скачать программу «Корни квадратные«

Источник

Таблица корней по алгебре

Таблица корней — это таблица, с помощью которой можно извлекать квадратные корни чисел от 0 до 99. Пользоваться таблицей очень легко. Просто выберите число десятков по вертикали и число единиц по горизонтали, результат будет на их пересечении. Например, √36=6. 3 выбирается слева, 6 — сверху. Возможно, вам также будет интересна таблица квадратов.

Извлечение корней онлайн

Таблица корней по алгебре (числа от 0 до 99, округление до пятого знака)

√x 1 2 3 4 5 6 7 8 9
1 1,41421 1,73205 2 2,23607 2,44949 2,64575 2,82843 3
1 3,16228 3,31662 3,4641 3,60555 3,74166 3,87298 4 4,12311 4,24264 4,3589
2 4,47214 4,58258 4,69042 4,79583 4,89898 5 5,09902 5,19615 5,2915 5,38516
3 5,47723 5,56776 5,65685 5,74456 5,83095 5,91608 6 6,08276 6,16441 6,245
4 6,32456 6,40312 6,48074 6,55744 6,63325 6,7082 6,78233 6,85565 6,9282 7
5 7,07107 7,14143 7,2111 7,28011 7,34847 7,4162 7,48331 7,54983 7,61577 7,68115
6 7,74597 7,81025 7,87401 7,93725 8 8,06226 8,12404 8,18535 8,24621 8,30662
7 8,3666 8,42615 8,48528 8,544 8,60233 8,66025 8,7178 8,77496 8,83176 8,88819
8 8,94427 9 9,05539 9,11043 9,16515 9,21954 9,27362 9,32738 9,38083 9,43398
9 9,48683 9,53939 9,59166 9,64365 9,69536 9,74679 9,79796 9,84886 9,89949 9,94987

Таблица корней в виде компактной картинки (удобно для шпаргалки, например, в 8 классе):

таблица корней

Чтобы добавить страницу в закладки, нажмите Ctrl+D.

Если страница помогла, сохраните её и поделитесь ссылкой с друзьями:

Источник

Формулы степеней и корней.

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n-ной степенью числа a когда:

Формулы степеней и корней

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

2. В делении степеней с одинаковым основанием их показатели вычитаются:

Формулы степеней и корней

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

5. Возводя степень в степень, показатели степеней перемножают:

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

Читайте также:  Главнокомандующий армиями фронта

Формулы степеней и корней

2. Корень из отношения равен отношению делимого и делителя корней:

Формулы степеней и корней

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

Формулы степеней и корней

4. Если увеличить степень корня в n раз и в тоже время возвести в n-ую степень подкоренное число, то значение корня не поменяется:

Формулы степеней и корней

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n-ой степени из подкоренного числа, то значение корня не поменяется:

Формулы степеней и корней

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

Формулы степеней и корней

Формулу a m :a n =a m — n можно использовать не только при m > n , но и при m 4 :a 7 = a 4 — 7 = a -3 .

Чтобы формула a m :a n =a m — n стала справедливой при m=n, нужно присутствие нулевой степени.

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n, необходимо извлечь корень n–ой степени из m-ой степени этого числа а:

Формулы степеней и корней

Формулы степеней.

Формулы степеней и корней

6. a n = — деление степеней;

Формулы степеней и корней

7. — деление степеней;

Формулы степеней и корней

8. a 1/n = ;

Источник

Квадратный корень: формулы вычисления. Формула нахождения корней квадратного уравнения

Некоторые задачи в математике требуют умения вычислять значение корня квадратного. К таким задачам относится решение уравнений второго порядка. В данной статье приведем эффективный метод вычисления квадратных корней и используем его при работе с формулами корней квадратного уравнения.

Что такое квадратный корень?

В математике этому понятию соответствует символ √. Исторические данные говорят, что он начал использоваться впервые приблизительно в первой половине XVI века в Германии (первый немецкий труд по алгебре Кристофа Рудольфа). Ученые полагают, что указанный символ является трансформированной латинской буквой r (radix означает «корень» на латыни).

Корень из какого-либо числа равен такому значению, квадрат которого соответствует подкоренному выражению. На языке математики это определение будет выглядеть так: √x = y, если y2 = x.

Корень из положительного числа (x > 0) является также числом положительным (y > 0), однако если берут корень из отрицательного числа (x

Во всех вышеназванных случаях следует применять специальный метод вычисления корня квадратного. В настоящее время таких методов известно несколько: например разложение в ряд Тейлора, деление столбиком и некоторые другие. Из всех известных методов, пожалуй, наиболее простым и эффективным является использование итерационной формулы Герона, которая также известна как вавилонский способ определения квадратных корней (существуют свидетельства, что древние вавилоняне применяли ее в своих практических вычислениях).

Пусть необходимо определить значение √x. Формула нахождения квадратного корня имеет следующий вид:

an+1 = 1/2(an+x/an), где limn->∞(an) => x.

Расшифруем эту математическую запись. Для вычисления √x следует взять некоторое число a0 (оно может быть произвольным, однако для быстрого получения результата следует выбирать его таким, чтобы (a0)2 было максимально близко к x. Затем подставить его в указанную формулу вычисления квадратного корня и получить новое число a1, которое уже будет ближе к искомому значению. После этого необходимо уже a1 подставить в выражение и получить a2. Эту процедуру следует повторять до получения необходимой точности.

Пример применения итерационной формулы Герона

Описанный выше алгоритм получения корня квадратного из некоторого заданного числа для многих может звучать достаточно сложно и запутанно, на деле же оказывается все гораздо проще, поскольку эта формула сходится очень быстро (особенно если выбрано удачное число a0).

Приведем простой пример: необходимо вычислить √11. Выберем a0 = 3, так как 32 = 9, что ближе к 11, чем 42 = 16. Подставляя в формулу, получим:

a1 = 1/2(3 + 11/3) = 3,333333;

a2 = 1/2(3,33333 + 11/3,33333) = 3,316668;

a3 = 1/2(3,316668 + 11/3,316668) = 3,31662.

Дальше нет смысла продолжать вычисления, поскольку мы получили, что a2 и a3 начинают отличаться лишь в 5-м знаке после запятой. Таким образом, достаточно было применить всего 2 раза формулу, чтобы вычислить √11 с точностью до 0,0001.

Читайте также:  Приказы как органы власти на Руси

В настоящее время широко используются калькуляторы и компьютеры для вычисления корней, тем не менее отмеченную формулу полезно запомнить, чтобы иметь возможность вручную вычислять их точное значение.

Уравнения второго порядка

Понимание того, что такое корень квадратный, и умение его вычислять используется при решении квадратных уравнений. Этими уравнениями называют равенства с одной неизвестной, общий вид которых приведен на рисунке ниже.

Здесь c, b и a представляют собой некоторые числа, причем a не должно равняться нулю, а значения c и b могут быть совершенно произвольными, в том числе и равными нулю.

Любые значения икса, удовлетворяющие указанному на рисунке равенству, называются его корнями (следует не путать это понятие с квадратным корнем √). Поскольку рассматриваемое уравнение имеет 2-й порядок (x2), то корней для него не может быть больше, чем два числа. Рассмотрим далее в статье, как находить эти корни.

Нахождения корней квадратного уравнения (формула)

Этот способ решения рассматриваемого типа равенств также называется универсальным, или методом через дискриминант. Его можно применять для любых квадратных уравнений. Формула дискриминанта и корней квадратного уравнения имеет следующий вид:

Из нее видно, что корни зависят от значения каждого из трех коэффициентов уравнения. Более того, вычисление x1 отличается от расчета x2 только знаком перед корнем квадратным. Подкоренное выражение, которое равно b2 — 4ac, является не чем иным, как дискриминантом рассматриваемого равенства. Дискриминант в формуле корней квадратного уравнения играет важную роль, поскольку он определяет число и тип решений. Так, если он равен нулю, то решение будет всего одно, если он положительный, то уравнение обладает двумя действительными корнями, наконец, отрицательный дискриминант приводит к двум комплексным корням x1 и x2.

Теорема Виета или некоторые свойства корней уравнений второго порядка

В конце XVI века один из основоположников современной алгебры француз Франсуа Виет, изучая уравнения второго порядка, смог получить свойства его корней. Математически их можно записать так:

x1 + x2 = -b / a и x1 * x2 = c / a.

Оба равенства легко может получить каждый, для этого необходимо лишь выполнить соответствующие математические операции с корнями, полученными через формулу с дискриминантом.

Совокупность этих двух выражений можно по праву назвать второй формулой корней квадратного уравнения, которая предоставляет возможность угадывать его решения, не используя при этом дискриминант. Здесь следует оговориться, что хотя оба выражения справедливы всегда, применять их для решения уравнения удобно только в том случае, если оно может быть разложено на множители.

Задача на закрепление полученных знаний

Решим математическую задачу, в которой продемонстрируем все приемы, обсуждаемые в статье. Условия задачи следующие: необходимо найти два числа, для которых произведение равно -13, а сумма составляет 4.

Это условие сразу напоминает о теореме Виета, применяя формулы суммы квадратных корней и их произведения, записываем:

x1 + x2 = -b / a = 4;

x1 * x2 = c / a = -13.

Если предположить, что a = 1, тогда b = -4 и c = -13. Эти коэффициенты позволяют составить уравнение второго порядка:

Воспользуемся формулой с дискриминантом, получим следующие корни:

x1,2 = (4 ± √D)/2, D = 16 — 4 * 1 * (-13) = 68.

То есть задача свелась к нахождению числа √68. Заметим, что 68 = 4 * 17, тогда, используя свойство квадратного корня, получим: √68 = 2√17.

Теперь воспользуемся рассмотренной формулой квадратного корня: a0 = 4, тогда:

a1 = 1/2(4 + 17/4) = 4,125;

a2 = 1/2(4,125 + 17/4,125) = 4,1231.

В вычислении a3 нет необходимости, поскольку найденные значения отличаются всего на 0,02. Таким образом, √68 = 8,246. Подставляя его в формулу для x1,2, получим:

x1 = (4 + 8,246)/2 = 6,123 и x2 = (4 — 8,246)/2 = -2,123.

Как видим, сумма найденных чисел действительно равна 4, если же найти их произведение, то оно будет равно -12,999, что удовлетворяет условию задачи с точностью до 0,001.

Источник