Меню

Примеры использования функции ГАУСС в Excel

Примеры решений распределения с помощью функции ГАУСС в Excel

Функция ГАУСС, подлежащая применению в версиях Excel начиная от 2013 года или новее. Она позволяет вычислить такую вероятность, с которой элемент стандартной нормальной совокупности будет находиться в интервале между средними и стандартными отклонениями от среднего.

Примеры использования функции ГАУСС в Excel

Синтаксис рассматриваемой функции не представляет из себя ничего сложного, ведь функции ГАУСС присущ всего один обязательный аргумент – Z – возвращающий число.

Важно отметить, что существует определенная связь между функцией ГАУСС и такой статистической функцией, как стандартное нормальное распределение, иначе говоря – НОРМ.СТ.РАСП.

Итак, всегда функция НОРМ.СТ.РАСП (0; Истина) делает возврат 0,5, тогда как ГАУСС (z) имеет в результате значение меньше на 0,5, чем результат функции НОРМ.СТ.РАСП. На рисунке, расположенном ниже, приведен пример использования данных статистических функций для возвращения числа 1,5.

НОРМ.СТ.РАСП.

Для наглядности продемонстрируем зависимость между значениями функций графическим способом. Для этого – сформируем таблицу с выборкой чисел, например на интервале от -5 до 5 с шагом 0,5, а затем по имеющимся данным построим график:

пропорциональная корреляция.

На графике четко прослеживается пропорциональная корреляция результатов вычислений функций ГАУСС и НОРМ.СТ.РАСП.

Решение системы вероятности методом ГАУССА в Excel

Задача представляет собой вычисление вероятности возможных значений при бросании двух костей.

Пример с игрой в кости является наиболее наглядным, так как мы имеем ограниченный набор данных, которые соответствуют вероятностям. Так, вероятность имеет значение от нуля до единицы, к которому стремится наблюдаемая частота при бесконечно большой выборке или повторении эксперимента.

Существует 36 возможных комбинаций. При этом, вероятность того, что при бросании двух костей выпадет 2 очка равна 1/36, а 7 очков – 1/6. Отобразим перечень возможных значений бросания двух игральных костей в таблице, приведя при этом все вероятности к общему знаменателю.

36 возможных комбинаций.

Однако, такой ряд данных не дает возможности для выявления полного распределения, поэтому следует отобразить данные об отдельных вероятностях в рассчитанную по функции распределения. Так необходимо, все вероятности просуммировать последовательно (1+2+3+4+5+6+5+4+3+2+1).

просуммировать последовательно.

Теперь определяем коэффициент вероятности разделив по отдельности последовательную сумму вероятностей на максимально возможное количество комбинаций 36.

количество комбинаций 36.

В первом случае нами были рассмотрены отдельные вероятности, во втором – сумма вероятностей от первого возможного значения до заданного.

Необходимо преобразовать диапазон ячеек D2:D13 в числовой формат данных, иначе при обращении на них функции ГАУСС будет иметь место ошибка.

В созданный рядом с первоначальной таблицей столбец E введем формулу, которая в качестве аргумента делает обращение к ячейке D2.

Далее, протянем формулу вниз по столбцу, и получим ряд вероятностей с использованием функции ГАУСС.

ГАУСС.

Для более наглядной визуализации, построим график вероятности:

график вероятности.

Решение вероятности методом распределения кривой Гаусса в Excel

Теперь в качестве примера нормального распределения с помощью функции ГАУСС решим задачу о вероятностном соотношении результатов стрельбы по мишени.

Для этого построим базовую таблицу, которая отражает результаты стрельбы по мишени в девяти подходах.

результаты стрельбы.

Затем, выберем только уникальные результаты, для этого используем хитрую формулу:

используем хитрую формулу.

Делаем сортировку формулой для результатов по возрастанию и выводим в отдельную табличку:

Читайте также:  Виды и классификация звезд таблица

сортировку формулой.

После чего определим частоту встречающихся только для уникальных результатов:

частота уникальных результатов.

Далее применим функцию ГАУСС к значениям ячеек с частотой встречаемости. Отразим результаты вычислений на графике:

нормальное распределение кривой.

На графике красной линией определено нормальное распределение кривой Гаусса.

Источник

Значения функции Гаусса

date image2015-04-01
views image1450

facebook icon vkontakte icon twitter icon odnoklasniki icon

Сотые
Десятые
0,0 0,3989 0,3989 0,3989 0,3988 0,3986 0,3984 0,3982 0,3980 0,3977 0,3973
0,1 0,3970 0,3965 0,3961 0,3956 0,3951 0,3945 0,3939 0,3932 0,3925 0,3918
0,2 0,3910 0,3902 0,3894 0,3885 0,3876 0,3867 0,3857 0,3847 0,3836 0,3825
0,3 0,3814 0,3802 0,3790 0,3778 0,3765 0,3752 0,3739 0,3725 0,3712 0,3697
0,4 0,3683 0,3668 0,3653 0,3637 0,3621 0,3605 0,3589 0,3572 0,3555 0,3538
0,5 0,3521 0,3503 0,3485 0,3467 0,3448 0,3429 0,3410 0,3391 0,3372 0,3352
0,6 0,3332 0,3312 0,3292 0,3271 0,3251 0,3230 0,3209 0,3187 0,3166 0,3144
0,7 0,3123 0,3101 0,3079 0,3056 0,3034 0,3011 0,2989 0,2966 0,2943 0,2920
0,8 0,2897 0,2874 0,2850 0,2827 0,2803 0,2780 0,2756 0,2732 0,2709 0,2685
0,9 0,2661 0,2637 0,2613 0,2589 0,2565 0,2541 0,2516 0,2492 0,2468 0,2444
1,0 0,2420 0,2396 0,2371 0,2347 0,2323 0,2299 0,2275 0,2251 0,2227 0,2203
1,1 0,2179 0,2155 0,2131 0,2107 0,2083 0,2059 0,2036 0,2012 0,1989 0,1965
1,2 0,1942 0,1919 0,1895 0,1872 0,1849 0,1826 0,1804 0,1781 0,1758 0,1736
1,3 0,1714 0,1691 0,1669 0,1647 0,1626 0,1604 0,1582 0,1561 0,1539 0,1518
1,4 0,1497 0,1476 0,1456 0,1435 0,1415 0,1394 0,1374 0,1354 0,1334 0,1315
1,5 0,1295 0,1276 0,1257 0,1238 0,1219 0,1200 0,1182 0,1163 0,1145 0,1127
1,6 0,1109 0,1092 0,1074 0,1057 0,1040 0,1023 0,1006 0,0989 0,0973 0,0957
1,7 0,0940 0,0925 0,0909 0,0893 0,0878 0,0863 0,0848 0,0833 0,0818 0,0804
1,8 0,0790 0,0775 0,0761 0,0748 0,0734 0,0721 0,0707 0,0694 0,0681 0,0669
1,9 0,0656 0,0644 0,0632 0,0620 0,0608 0,0596 0,0584 0,0573 0,0562 0,0551
2,0 0,0540 0,0529 0,0519 0,0508 0,0498 0,0488 0,0478 0,0468 0,0459 0,0449
2,1 0,0440 0,0431 0,0422 0,0413 0,0404 0,0396 0,0387 0,0379 0,0371 0,0363
2,2 0,0355 0,0347 0,0339 0,0332 0,0325 0,0317 0,0310 0,0303 0,0297 0,0290
2,3 0,0283 0,0277 0,0270 0,0264 0,0258 0,0252 0,0246 0,0241 0,0235 0,0229
2,4 0,0224 0,0219 0,0213 0,0208 0,0203 0,0198 0,0194 0,0189 0,0184 0,0180
2,5 0,0175 0,0171 0,0167 0,0163 0,0158 0,0154 0,0151 0,0147 0,0143 0,0139
2,6 0,0136 0,0132 0,0129 0,0126 0,0122 0,0119 0,0116 0,0113 0,0110 0,0107
2,7 0,0104 0,0101 0,0099 0,0096 0,0093 0,0091 0,0088 0,0086 0,0084 0,0081
2,8 0,0079 0,0077 0,0075 0,0073 0,0071 0,0069 0,0067 0,0065 0,0063 0,0061
2,9 0,0060 0,0058 0,0056 0,0055 0,0053 0,0051 0,0050 0,0048 0,0047 0,0046
3,0 0,0044 0,0043 0,0042 0,0040 0,0039 0,0038 0,0037 0,0036 0,0035 0,0034

Нормальный закон распределения

Значения функции Ф(t)=P(½T½£tтабл.)

Целые и десятые доли t Сотые доли t
0,0 0,0000 0,0080 0,0160 0,0239 0,0319 0,0399 0,0478 0,0558 0,0638 0,0717
0,1 0,0797 0,0876 0,0955 0,1034 0,1113 0,1192 0,1271 0,1350 0,1428 0,1507
0,2 0,1585 0,1663 0,1741 0,1819 0,1897 0,1974 0,2051 0,2128 0,2205 0,2282
0,3 0,2358 0,2434 0,2510 0,2586 0,2661 0,2737 0,2812 0,2886 0,2961 0,3035
0,4 0,3108 0,3182 0,3255 0,3328 0,3401 0,3473 0,3545 0,3616 0,3688 0,3759
0,5 0,3829 0,3899 0,3969 0,4039 0,4108 0,4177 0,4245 0,4313 0,4381 0,4448
0,6 0,4515 0,4581 0,4647 0,4713 0,4778 0,4843 0,4907 0,4971 0,5035 0,5098
0,7 0,5161 0,5223 0,5285 0,5346 0,5407 0,5467 0,5527 0,5587 0,5646 0,5705
0,8 0,5763 0,5821 0,5878 0,5935 0,5991 0,6047 0,6102 0,6157 0,6211 0,6265
0,9 0,6319 0,6372 0,6424 0,6476 0,6528 0,6579 0,6629 0,6680 0,6729 0,6778
1,0 0,6827 0,6875 0,6923 0,6970 0,7017 0,7063 0,7109 0,7154 0,7199 0,7243
1,1 0,7287 0,7330 0,7373 0,7415 0,7457 0,7499 0,7540 0,7580 0,7620 0,7660
1,2 0,7699 0,7737 0,7775 0,7813 0,7850 0,7887 0,7923 0,7959 0,7995 0,8029
1,3 0,8064 0,8098 0,8132 0,8165 0,8198 0,8230 0,8262 0,8293 0,8324 0,8355
1,4 0,8385 0,8415 0,8444 0,8473 0,8501 0,8529 0,8557 0,8584 0,8611 0,8638
1,5 0,8664 0,8690 0,8715 0,8740 0,8764 0,8789 0,8812 0,8836 0,8859 0,8882
1,6 0,8904 0,8926 0,8948 0,8969 0,8990 0,9011 0,9031 0,9051 0,9070 0,9090
1,7 0,9109 0,9127 0,9146 0,9164 0,9181 0,9199 0,9216 0,9233 0,9249 0,9265
1,8 0,9281 0,9297 0,9312 0,9328 0,9342 0,9357 0,9371 0,9385 0,9399 0,9412
1,9 0,9426 0,9439 0,9451 0,9464 0,9476 0,9488 0,9500 0,9512 0,9523 0,9534
2,0 0,9545 0,9556 0,9566 0,9576 0,9586 0,9596 0,9606 0,9615 0,9625 0,9634
2,1 0,9643 0,9651 0,9660 0,9668 0,9676 0,9684 0,9692 0,9700 0,9707 0,9715
2,2 0,9722 0,9729 0,9736 0,9743 0,9749 0,9756 0,9762 0,9768 0,9774 0,9780
2,3 0,9786 0,9791 0,9797 0,9802 0,9807 0,9812 0,9817 0,9822 0,9827 0,9832
2,4 0,9836 0,9840 0,9845 0,9849 0,9853 0,9857 0,9861 0,9865 0,9869 0,9872
2,5 0,9876 0,9879 0,9883 0,9886 0,9889 0,9892 0,9895 0,9898 0,9901 0,9904
2,6 0,9907 0,9909 0,9912 0,9915 0,9917 0,9920 0,9922 0,9924 0,9926 0,9929
2,7 0,9931 0,9933 0,9935 0,9937 0,9939 0,9940 0,9942 0,9944 0,9946 0,9947
2,8 0,9949 0,9950 0,9952 0,9953 0,9955 0,9956 0,9958 0,9959 0,9960 0,9961
2,9 0,9963 0,9964 0,9965 0,9966 0,9967 0,9968 0,9969 0,9970 0,9971 0,9972
3,0 0,9973 0,9974 0,9975 0,9976 0,9976 0,9977 0,9978 0,9979 0,9979 0,9980
3,1 0,9981 0,9981 0,9982 0,9983 0,9983 0,9984 0,9984 0,9985 0,9985 0,9986
3,2 0,9986 0,9987 0,9987 0,9988 0,9988 0,9988 0,9989 0,9989 0,9990 0,9990
3,3 0,9990 0,9991 0,9991 0,9991 0,9992 0,9992 0,9992 0,9992 0,9993 0,9993
3,4 0,9993 0,9994 0,9994 0,9994 0,9994 0,9994 0,9995 0,9995 0,9995 0,9995
3,5 0,9995 0,9996 0,9996 0,9996 0,9996 0,9996 0,9996 0,9996 0,9997 0,9997
3,6 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9998 0,9998 0,9998
3,7 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998
3,8 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999
3,9 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999
4,0 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999
Читайте также:  Закрепление заголовка в верхней строке

Оглавление

Глава 1. Теория вероятностей. 4

1.1. Испытание и событие. 4

1.2. Классическое определение вероятности события. 5

1.3. Статистическое определение вероятности события. 6

1.4. Понятия суммы и произведения событий. 7

1.5.Теорема сложения вероятностей. 8

1.6.Теорема умножения вероятностей. 9

1.7. Формула полной вероятности. Формула Байеса. 12

1.8. Повторные независимые испытания. 13

1.8.1. Формула Бернулли. 13

1.8.2. Локальная теорема Лапласа. 15

1.8.3. Интегральная теорема Лапласа. 15

1.9. Случайные величины. 17

1.9.1. Дискретная случайная величина. 17

1.9.2. Непрерывная случайная величина. 18

1.10. Законы распределения случайных величин. 20

1.10.1. Биномиальный закон распределения. 20

1.10.2. Закон распределения Пуассона. 22

1.10.3. Нормальный закон распределения (закон Гаусса). 22

1.11. Элементы корреляционного и регрессионного анализа. 24

Глава 2. Линейное программирование. 29

2.1.1. Элементы линейной алгебры. 29

2.1.2. Основные понятия линейного программирования. 30

2.2. Геометрическое решение задач линейного программирования. 31

2.3. Симплексный метод. 35

2.3.1. Решение производственной задачи симплексным методом. 39

2.4 Транспортная задача. 43

2.4.1. Математическая модель и анализ транспортной задачи. 44

2.4.2. Составление начального плана перевозок. 45

2.4.3. Распределительный метод решения транспортной задачи. 47

2.4.4. Метод потенциалов. 52

2.4.5. Особенности решения транспортной задачи с невыполненным балансом. 57

Источник



Функция Гаусса (колоколообразная кривая) в EXCEL

history 2 апреля 2015 г.

Построим график функции Гаусса имеющий форму Колокообразной кривой (Gaussian function, Bell Curve Shape).

Функция Гаусса широко применяется в статистике для описания нормального распределения, для решения некоторых уравнений физики (уравнения диффузии и теплопроводности) и в ряде других прикладных задач (фильтр Гаусса).

Форма графика функция Гаусса зависит от величины 3-х коэффициентов: a (высота пика), b (положение центра), c (отвечает за ширину кривой).

В файле примера построен график функции (использована диаграмма Точечная с гладкими кривыми ). Коэффициенты находятся в отдельных ячейках, что позволяет быстро построить график нужной функции.

Читайте также:  Дискретная математика стр 4

Если коэффициент а =1/КОРЕНЬ(2*ПИ()) , то функция Гаусса является функцией распределения плотности верояности нормально распределенной случайной выличины с математическим ожиданием = b и со стандарным отклонением = с .

В файле примера также построен график для функции y(x)=exp(-x^2) с различными коэффициентами.

СОВЕТ : Для начинающих пользователей EXCEL советуем прочитать статью Основы построения диаграмм в MS EXCEL , в которой рассказывается о базовых настройках диаграмм, а также статью об основных типах диаграмм .

Источник

Другое: Таблица значений функции Гаусса

Таблица значений функции Гаусса [28.09.11]

Тема: Таблица значений функции Гаусса

Тип: Другое | Размер: 10.20K | Скачано: 148 | Добавлен 28.09.11 в 21:08 | Рейтинг: +2 | Еще Другое

Значения функции Гаусса
Значения функции Гаусса
Таблица значений функции Гаусса

десятичные доли x

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Понравилось? Нажмите на кнопочку ниже. Вам не сложно, а нам приятно).

Чтобы скачать бесплатно Другое на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.

Важно! Все представленные Другое для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.

Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.

Если Другое, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.

Добавление отзыва к работе

Добавить отзыв могут только зарегистрированные пользователи.

Источник