Меню

Разбавление и смешивание серной кислоты

4.2. Приготовление электролита и заливка аккумуляторных батарей

Электролит приготовляется путем разведения аккумуляторной серной кислоты плотностью 1,83. 1,84 (ГОСТ667—73) в дистиллированной воде с допустимыми примесями.

Химическая чистота электролита оказывает существенное влияние на работоспособность и срок службы батарей. Загрязнение электролита такими вредными примесями, как железо, марганец, хлор и другие, приводит к повышенному саморазряду батарей, снижению отдаваемой емкости, разрушению электродов и преждевременному выходу батареи из строя. Поэтому для приготовления электролита запрещается применять техническую серную кислоту и загрязненную (недистиллированную) воду. При приготовлении электролита, приведении батарей в рабочее состояние и техническом обслуживании батарей в эксплуатации необходимо пользоваться только чистой посудой и соблюдать чистоту.

В исключительных случаях при отсутствии дистиллированной воды для приготовления электролита допускается использование снеговой или дождевой воды, предварительно профильтрованной через чистое полотно для очистки от механических загрязнений. Нельзя собирать воду с железных крыш и в железные сосуды.

Электролит следует готовить в стойкой к действию серной кислоты посуде (эбонитовой, фаянсовой, керамической), соблюдая при этом особую осторожность и правила техники безопасности. Применение железной, медной, цинковой или стеклянной посуды категорически запрещается.

Аккумуляторные батареи в зависимости от климатической зоны заливаются электролитом, имеющим плотность, указанную в графе 5 таблицы 3. Электролит требуемой плотности может быть приготовлен непосредственно из кислоты плотностью 1,83. 1,84 г/см 3 и воды. Однако при непрерывном вливании кислоты в воду происходит сильный разогрев раствора (80-90 °C) и требуется длительное время для его остывания. Поэтому для приготовления электролита требуемой плотности более удобно применять раствор кислоты промежуточной плотности 1,40 г/см 3 , так как в этом случае значительно сокращается время охлаждения электролита.

Таблица 3. Плотность электролита при приведении аккумуляторных батарей в рабочее состояние

Таблица 4. Количество дистиллированной воды, кислоты или её раствора плотностью 1,40 г/см 3 , необходимое для приготовления 1 л электролита требуемой плотности (при 25 °C)

Требуемая плотность электролита, г/см 3 Кол-во воды, л Количество серной кислоты плотностью 1,83 г/см 3 Кол-во воды, л Количество раствора серной кислоты плотностью 1,40 г/см 3 , л
л кг
1,20 0,859 0,200 0,365 0,547 0,476
1,21 0,849 0,211 0,385 0,519 0,500
1,22 0,839 0,221 0,405 0,491 0,524
1,23 0,829 0,231 0,424 0,465 0,549
1,24 0,819 0,242 0,444 0,438 0,572
1,25 0,809 0,253 0,464 0,410 0,601
1,26 0,800 0,263 0,484 0,382 0,624
1,27 0,791 0,274 0,503 0,357 0,652
1,28 0,781 0,285 0,523 0,329 0,679
1,29 0,772 0,295 0,541 0,302 0,705
1,31 0,749 0,319 0,585 0,246 0,760
1,40 0,650 0,423 0,776

Раствор серной кислоты плотностью 1,40 г/см 3 , приведенной к 25 °C, должен готовиться заранее и после охлаждения храниться в стеклянной или полиэтиленовой посуде.

Количество воды, кислоты или её раствора плотностью 1,40 г/см 3 , необходимое для приготовления 1 л электролита, указано в табл. 4. Примерное количество электролита, необходимое для заливки одной аккумуляторной батареи, дано в табл. 1. Пользуясь таблицами 1 и 4, можно рассчитать количество электролита заданной плотности для заливки как одной, так и нескольких батарей любого типа.

Расчет проводится в такой последовательности: из табл. 1 определяется общий объем электролита для заливки нужного числа батарей, затем по табл. 4 подсчитывается количество дистиллированной воды и раствора кислоты плотностью 1,40 г/см 3 (или крепкой кислоты), нужное для приготовления электролита заданной плотности для заливки всех батарей.

Плотность электролита измеряется с помощью денсиметра ГОСТ 1300-57 или аккумуляторного ареометра ТУ 25-11-968-77 (рис. 35). В первом случае электролит наливают в мерный цилиндр (мензурку) или другой стеклянный сосуд высотой 200. 300 мм, диаметром 50. 70 мм и опускают в него денсиметр (поплавок). Деление денсиметра, совпадающее с уровнем электролита в цилиндре, указывает на его плотность. Способ измерения плотности электролита в цилиндре применяют главным образом для контроля плотности электролита в баке, где его приготовляют.

Измерение плотности электролита ареометром

Ареометр позволяет измерять плотность электролита непосредственно в аккумуляторе. Он состоит из цилиндра с резиновой грушей и заборной трубкой и денсиметра (поплавка). При определении плотности электролита необходимо сжать рукой резиновую грушу ареометра, ввести конец заборной трубки в электролит и постепенно отпустить грушу. После того, как денсиметр всплывет, по его шкале определить плотность электролита в аккумуляторе. При измерениях надо следить за тем, чтобы денсиметр свободно плавал в электролите («не прилипал» к стенкам цилиндра).

Плотность электролита зависит. от температуры. При повышении температуры на 1 °C плотность электролита уменьшается, а при понижении температуры на 1 °C, наоборот, увеличивается на 0,0007 г/см 3 . На каждые 15 °C изменения температуры плотность изменяется примерно на 0,01 г/см 3 . Исходной считается температура электролита 25 °C. Поэтому при измерении плотности электролита следует учитывать его температуру и в необходимых случаях вносить поправку к показаниям ареометра, пользуясь табл. 5

Таблица 5. Величины поправок к показанию ареометра (денсиметра) в зависимости от температуры электролита

Температура электролита при измерении его плотности, °C Поправка к показанию ареометра, г/см 3
от -55 до -41 -0.05
от -40 до -26 -0.04
от -25 до -11 -0.03
от -10 до +4 -0.02
от +5 до +19 -0.01
от +20 до +30 0.00
от +31 до +45 +0.01
от +46 до +60 +0.02

Заливку электролита в аккумуляторы нужно проводить в такой последовательности:

  • снять защитный кожух полюсных выводов и крышку батареи (у танковых батарей и, автомобильных батарей типа 6СТ490ТР и 6СТ-190ТРН);
  • очистить поверхность батареи от пыли;
  • внешним осмотром убедиться в исправности моноблоков и ящиков и отсутствии дефектов в мастике (пузыри, трещины, отслоения);
  • разгерметизировать батареи, для чего с пробок удалить герметизирующую пленку (если они ею заклеены), срезать герметизирующие выступы на полиэтиленовых пробках, вывернуть пробки и удалить герметизирующие диски (где они установлены). В батареях с автоматической регулировкой уровня электролита удалить укупорочные стержни, вывернуть пробки и плотно надеть их на вентиляционные штуцера. Герметизирующие диски и укупорочные стержни обратно не ставить. Следует помнить, что, если не удалить герметизирующие детали, возникнет опасность разрыва аккумулятора газами, выделяющимися при заряде;
  • прочистить вентиляционные отверстия в пробках;
  • залить в каждый аккумулятор электролит (рис. 36) небольшой струей. Для заливки применять фарфоровую, полиэтиленовую или эбонитовую кружку и стеклянную, полиэтиленовую или эбонитовую воронку.
Заливка электролита в батарею с помощью кружки и воронки
36. Заливка электролита в батарею с помощью кружки и воронки

Аккумуляторные батареи заливаются электролитом, имеющим плотность в зависимости от климатической зоны, указанной в табл. 3.

Читайте также:  Электронные таблицы эксель примеры

Температура электролита, заливаемого в аккумуляторные батареи, должна быть не ниже 15° и не выше 25 °C.

В жаркой и теплой влажной зонах допускается заливка батарей электролитом с температурой до 35 °C.

Заливать электролит следует небольшой струей до тех пор, пока зеркало электролита не коснется нижнего торца тубуса горловины. В батареи, не имеющие тубуса, заливку электролита производить до уровня на 15. 20 мм выше предохранительного щитка для танковых и на 10. 15 мм выше предохранительного щитка для автомобильных батарей.

Уровень электролита проверяется с помощью стеклянной трубки диаметром 5. 6 мм с делениями (рис. 37). Погрузив трубку в электролит до упора в предохранительный щиток, нужно зажать пальцем верхний конец, затем приподнять ее: высота столбика в трубке соответствует уровню электролита в аккумуляторе.

Проверка уровня электролита в аккумуляторе с помощью стеклянной трубки с делениями
37. Проверка уровня электролита в аккумуляторе с помощью стеклянной трубки с делениями
Установка одинакового уровня электролита в аккумуляторах батареи с помощью груши со специальным наконечником
38. Установка одинакового уровня электролита в аккумуляторах батареи с помощью груши со специальным наконечником

Корректировка уровня электролита в аккумуляторах при заливке батарей упрощается при применении для этой цели резиновой груши со специальным наконечником (рис. 38). Груша имеет сменный эбонитовый наконечник в виде трубки с заглушённым нижним концом, в котором на некотором расстоянии от конца наконечника просверлено отверстие диаметром 2. 2,5 мм. Практически нужно иметь четыре сменных наконечника с расстоянием отверстий от конца: 12, 15, 17 и 20 мм. Наконечник груши вводят в заливное отверстие крышки аккумулятора до упора в предохранительный щиток, после чего грушу сжимают и отпускают. Если уровень электролита ниже нормы, в отверстие наконечника будет засасываться воздух: в аккумулятор следует добавить электролит. Если уровень электролита выше нормы, излишек его будет отсасываться в грушу и уровень установится на нужной высоте над предохранительным щитком.

Автомобильные батареи с автоматической регулировкой уровня электролита следует заливать (при пробке, надетой на вентиляционный штуцер) до верхнего среза заливной горловины. После снятия пробки со штуцера уровень электролита снизится автоматически до установленной нормы.

Примерное количество электролита, необходимое для заливки батарей разных типов, указано в табл. 1.

Источник

Серная кислота

Серная кислота

Строение молекулы и физические свойства

Серная кислота H 2SO 4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.

Валентность серы в серной кислоте равна VI.

Способы получения

1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS 2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

Аппарат Назначение и уравнения реакций
Печь для обжига 4FeS 2 + 11O 2 → 2Fe 2O 3 + 8SO 2 + Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800 о С

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO 3):

  • температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO 3 является температура 400-500 о С. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V 2O 5.
  • давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO 2 в SO 3. Образовавшийся оксид серы SO 3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H 2SO 4·nSO 3.

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Химические свойства

Серная кислота – это сильная двухосновная кислота.

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например, серная кислота взаимодействует с оксидом магния:

Еще пример: при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например, серная кислота взаимодействует с гидрокарбонатом натрия:

Или с силикатом натрия:

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например, хлорида натрия:

4. Также серная кислота вступает в обменные реакции с солями.

Например, серная кислота взаимодействует с хлоридом бария:

5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например, серная кислота реагирует с железом. При этом образуется сульфат железа (II):

Серная кислота взаимодействует с аммиаком с образованием солей аммония:

Концентрированная серная кислота является сильным окислителем. При этом она обычно восстанавливается до сернистого газа SO 2. С активными металлами может восстанавливаться до серы S, или сероводорода Н 2S.

Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

3Mg + 4H 2SO 4 → 3MgSO 4 + S + 4H 2O

При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.

7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например, концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

Источник



Разбавление и смешивание серной кислоты

В заводских условиях нередко бывает необходимо разбавить концентрированную серную кислоту водой или повысить концентрацию разбавленной кислоты, до­бавляя к ней концентрированную. Для этого предвари­тельно надо установить или проверить концентрацию ИСХОДНЫХ КИСЛОТ, определив в НИХ содержание H2SO4.

При добавлении воды к концентрированной кислоте (олеуму или моногидрату) можно получить кислоту лю­бой концентрации, однако при смешивании концентри­рованной. серной кислоты с водой выделяется большое количество тепла. Кислота может нагреться до кипения, произойдет бурное выделение паров и возможен выброс раствора из сосуда. Поэтому кислоты смешивают в спе­циальных аппаратах — смесителях, соблюдая соответ­ствующие меры предосторожности.

Смесители для приготовления кислоты низкой кон­центрации делают из кислотостойкого материала, для приготовления концентрированной кислоты — из чугуна. В производстве серной кислоты используют смесители разнообразного устройства. В некоторых случаях смеси­тель представляет собой чугунный эмалированный из­нутри котел, помещенный в стальной кожух и закры­тый крышкой. Смешиваемые кислоты поступают в чу­гунный эмалированный с обеих сторон конус, в котором они перемешиваются, после чего вытекают в котел. Для отвода тепла, выделяющегося при смешивании кислот, в пространство между котлом и кожухом непрерывно подается струя воды, омывающая стенки аппарата.

В некоторых случаях кислота после смешивания в небольшом резервуаре поступает в трубы, орошаемые снаружи водой, где одновременно охлаждается и допол­нительно перемешивается.

При смешивании концентрированной серной кислоты с водой или с более разбавленной серной кислотой необ­ходимо рассчитывать количество смешиваемых кислот. Расчеты проводят по так называемому правилу креста. Ниже приводится несколько примеров такого расчета.

1. Определить количество 100%-ной серной кислоты и воды, которые необходимо смешать для получения 45%-ной II2SO|.

Слева указывают концентрацию более концентрированной кис­лоты (в данном случае 100%), а справа — более разбавленной (п данном случае 0%—вода). Ннже, между ними, указывают заданную концентрацию (45%). Через цифру, обозначающую эту концентрацию, проводят дне перекрещивающиеся линии, а на их концах указывают соответствующую разность чисел:

Полученные под кислотами исходных концентраций цифры по­казывают, сколько массовых частей кислоты каждой из указанных концентраций необходимо смешать для получения кислоты заданной концентрации. В нашем примере для приготовления 45%-ной кисло­ты следует смешать 45 масс. ч. 100%-ной кислоты н 55 масс. ч. воды.

Эту же задачу можно решить исходя из общего баланса II2SO4 (или S03) в серной кислоте:

Числитель левой части уравнения соответствует содержанию H2S04 (в кг) в I кг 100%-ной серной кислоты, знаменатель — об­щему количеству заданного раствора (в кг). Правая часть уравнения соответствует концентрации серной кислоты в долях единицы. Ре­шая уравнение, получаем х—1,221 кг. Это значит, что к 1 кг 100%- ной серной кислоты надо добавить 1,221 кг воды, при этом полу­чится 45%-ная кислота.

2. Определить количество 20%-ного олеума, которое следует сме­шать с 10%-нон серной кислотой для получения 98%-ной кислоты.

Задача решается также по правилу креста, однако концентрацию олеума в этом примере нужно выразить в % H2SO4, используя урав­нения (9) н (8):

А —= 81,63 + 0,1837-20—= 85,304;

Б 1,225-85,304 — 104,5.

По правилу креста

Разбавление и смешивание серной кислоты

Следовательно, для получения 98%-ной серной кислоты требуется смешать 88 масс. ч. 20%-ного олеума и 6,5 масс. ч. 10%-иой серной кислоты.

Источник

Серная кислота. Общая характеристика, получение, химические свойства

Серная кислота, также известная как масло витриола, или купоросное масло представляет собой минеральную кислоту, состоящую из элементов серы, кислорода и водорода, с молекулярной формулой H 2SO 4.

Она является бесцветной, не имеющей запаха вязкой жидкостью, которая растворима в воде и синтезируется в реакциях, которые являются сильно экзотермическими.

Обладает следующими важными характеристиками:

  • гигроскопичная — легко поглощает водяной пар из воздуха;
  • коррозионная — сильный окислитель и дегидратирующий агент;
  • вызывает ожоги — даже при малых концентрациях способна к образованию химических и вторичных термических ожогов.

Серная кислота в истории

Изучение витриола ( купороса) — категории стекловидных минералов, из которых может быть получена кислота, началось в древности.

  • Одни из самых ранних дискуссий о происхождении и свойствах витриола — в работах греческого врача Диоскорида (I век нашей эры) и римского натуралиста Плиния Старшего (23-79 годы нашей эры).

Средневековые алхимики исламской эпохи, Джабир ибн Хайян (721 — 815, также известный как Гебер), Рази (865 — 925) и Джамаль Дин аль — Ватват (1318), включили купорос в списки классификации минералов.

  • Ибн Сина ( Авиценна) сосредоточился на медицинских применениях и различных разновидностях витриола.

Мухаммад ибн Закарий аль-Рази (854-925) считается первым, кто произвел серную кислоту. Серная кислота была названа «маслом витриола» средневековыми европейскими алхимиками, потому что она была приготовлена обжаркой «зелёного купороса» ( сульфата железа (II)) в железной реторте.

  • В XVII веке германо — голландский химик Иоганн Глаубер приготовил серную кислоту, сжигая серу вместе с селитрой (нитрат калия, KNO3), в присутствии пара. По мере разложения солевого раствора он окислял серу до SO3, который объединялся с водой для получения серной кислоты.

В 1736 году лондонский фармацевт Джошуа Уорд использовал этот метод для начала первого крупномасштабного производства серной кислоты.

  • В 1746 году в Бирмингеме Джон Робак применил этот способ для получения H 2SO 4 в камерах со свинцовой облицовкой, которые были более прочными, менее дорогими и более крупными, чем ранее использовавшиеся стеклянные контейнеры. Этот процесс позволил эффективно индустриализовать производство серной кислоты.

После нескольких уточнений этот способ, называемый процессом в свинцовой камере или «камерный процесс», оставался стандартом для производства серной кислоты в течение почти двух столетий.

В 1831 году британский торговец уксусом Перегрин Филлипс запатентовал «контактный процесс», который был гораздо более экономичным процессом производства серного ангидрида и концентрированной серной кислоты.

Получение серной кислоты

Существует несколько способов получения серной кислоты, в частности

  • процесс влажной серной кислоты (метод WSA), мокрый катализ;
  • метод «свинцовой камеры» — первый индустриальный способ получения серной кислоты;
  • «контактный метод» — современный способ получения больших объемов H 2SO 4.

Серная кислота и Вода

Приготовление разбавленной кислоты может быть опасным из-за тепла, выделяющегося в процессе разбавления.

Вода обладает более высокой теплоемкостью, чем кислота, и поэтому сосуд из холодной воды будет поглощать тепло по мере добавления кислоты.

Реакция находится в равновесии, которое способствует быстрому протонированию воды, добавление кислоты к воде гарантирует, что кислота является ограничительным реагентом.

Эту реакцию лучше всего рассматривать как образование ионов гидроксония:

Серная кислота и Ожоги

Серная кислота способна вызывать сильные ожоги, особенно когда она находится в высоких концентрациях.

  • Она легко разлагает белки и липиды посредством гидролиза амида и сложного эфира при контакте с живыми тканями, такими как кожа и мышцы;
  • проявляет сильное дегидратирующее свойство на углеводах, высвобождая дополнительное тепло и вызывая вторичные термические ожоги;
  • быстро атакует роговицу и может вызвать постоянную слепоту, если плеснуть на глаза;
  • в случае проглатывания она необратимо повреждает внутренние органы и может даже привести к летальному исходу;
  • сильные окислительные свойства делают ее сильно коррозионной по отношению ко многим металлам и могут привести к его разрушению на других материалах.

По этим причинам ущерб, наносимый серной кислотой, потенциально является более серьезным, чем ущерб, наносимый другими сравнительно сильными кислотами, такими как соляная кислота и азотная кислота.

Серная кислота и ее Опасность

  • H 2SO 4 — негорючая кислота.

Основными профессиональными рисками, создаваемыми этой кислотой, являются контакт с кожей, приводящий к ожогам и вдыхание паров.

  • Воздействие паров в высоких концентрациях приводит к немедленному и сильному раздражению глаз, дыхательных путей и слизистых оболочек: это быстро прекращается после воздействия, хотя существует риск последующего отека легких, если повреждение тканей было более сильным.

При более низких концентрациях наиболее часто сообщаемым симптомом хронического воздействия сернокислотных аэрозолей является эрозия зубов, обнаруженная практически во всех исследованиях.

  • Повторное воздействие сернокислых туманов может повысить вероятность развития рака легких до 64 процентов.

В США допустимый предел воздействия на серную кислоту установлен на уровне 1 мг/м3: пределы в других странах аналогичны. Были сообщения о приеме серной кислоты в пищу, приводящем к дефициту витамина B12 с комбинированной дегенерацией.

  • В таких случаях чаще всего поражается спинной мозг, но зрительные нервы могут демонстрировать демиелинизацию, потерю аксонов и глиозы.

Серная кислота и ее Применение

Производство H 2SO 4 в стране является хорошим показателем ее промышленной прочности.

Мировое производство в 2004 году составило около 180 миллионов тонн при следующем географическом распределении:

  • Азия — 35%,
  • Северная Америка (включая Мексику) — 24%,
  • Африка 11%, Западная Европа — 10%,
  • Восточная Европа и Россия — 10%,
  • Австралия и Океания — 7%,
  • Южная Америка — 7%.

Большая часть этого количества ( ≈60%) потребляется на удобрения, в частности на суперфосфаты, фосфат аммония и сульфаты аммония.

Около 20% используется в химической промышленности для производства моющих средств, синтетических смол, красителей, фармацевтических препаратов, нефтяных катализаторов, инсектицидов и антифризов, а также в различных процессах, таких как кислотизация нефтяных скважин, восстановление алюминия, проклеивание бумаги, обработка воды.

Около 6% применений относятся к пигментам и включают краски, эмали, печатные краски, мелованные ткани и бумагу.

Остальное количество ( ≈14%) применяется в таких отраслях, как производство взрывчатых веществ, целлофана, ацетата и вискозного текстиля, смазочных материалов, цветных металлов и батарей.

Серная кислота и Водоросли

H 2SO 4 используется в качестве защиты некоторыми морскими видами, например, фаэофит Desmarestia munda (порядок Desmarestiales) концентрирует серную кислоту в клеточных вакуолях.

  • Под воздействием воздуха они выделяют кислоту, тем самым разрушая себя и близлежащие морские водоросли в процессе.

Серная кислота и Венера

Серная кислота образуется в верхних слоях атмосферы Венеры при фотохимическом воздействии Солнца на диоксид углерода, диоксид серы и водяной пар.

  • Ультрафиолетовые фотоны с длинами волн менее 169 нм могут фотодиссоциировать диоксид углерода на монооксид углерода и атомный кислород.

В верхних, более холодных частях атмосферы Венеры серная кислота существует в виде жидкости, а густые облака серной кислоты полностью затмевают поверхность планеты, если смотреть сверху.

  • Постоянные венерины облака производят концентрированный кислотный дождь, так как облака в атмосфере Земли производят водный дождь.

Серная кислота и Европа

Инфракрасные спектры, полученные космическим аппаратом NASA Galileo, показывают различные поглощения на спутнике Юпитера Европе, которые приписываются одному или нескольким гидратам серной кислоты.

  • H 2SO 4 в растворе с водой вызывает значительное снижение температуры плавления воды до 210 К (− 63 С), и это делает более вероятным существование жидких растворов под ледяной коркой Европы.

Трактовка спектров несколько спорна. Некоторые планетологи предпочитают присваивать спектральные особенности сульфатному иону, возможно, как части одного или нескольких минералов на поверхности Европы.

Серная кислота на Земле

Чистая серная кислота не встречается естественным образом на Земле в безводной форме из-за ее большого сродства к воде.

  • Разбавленная серная кислота является составной частью кислотного дождя, который образуется атмосферным окислением диоксида серы в присутствии воды, то есть окислением сернистой кислоты.

Диоксид серы является основным побочным продуктом, получаемым при сжигании серосодержащих видов топлива, таких как уголь или нефть.

  • Серная кислота образуется путем окисления сульфидных минералов, таких как сульфид железа.
  • В стратосфере, втором слое атмосферы, который обычно находится между 10 и 50 км над поверхностью Земли, серная кислота образуется в результате окисления вулканического диоксида серы гидроксильным радикалом.

Поскольку серная кислота достигает перенасыщения в стратосфере, она может образовать частицы аэрозоля и обеспечить поверхность для роста аэрозоля путем конденсации и коагуляции с другими аэрозолями вода-серная кислота, что приводит к образованию стратосферного аэрозольного слоя.

Таблица 1: Химические свойства серной кислоты

Источник