Меню

Решения задач линейная регрессия и коэффициент корреляции

Решения задач: линейная регрессия и коэффициент корреляции

Парная линейная регрессия — это зависимость между одной переменной и средним значением другой переменной. Чаще всего модель записывается как $y=ax+b+e$, где $x$ — факторная переменная, $y$ — результативная (зависимая), $e$ — случайная компонента (остаток, отклонение).

В учебных задачах по математической статистике обычно используется следующий алгоритм для нахождения уравнения регрессии.

  1. Выбор модели (уравнения). Часто модель задана заранее (найти линейную регрессию) или для подбора используют графический метод: строят диаграмму рассеяния и анализируют ее форму.
  2. Вычисление коэффициентов (параметров) уравнения регрессии. Часто для этого используют метод наименьших квадратов.
  3. Проверка значимости коэффициента корреляции и параметров модели (также для них можно построить доверительные интервалы), оценка качества модели по критерию Фишера.
  4. Анализ остатков, вычисление стандартной ошибки регрессии, прогноз по модели (опционально).

Ниже вы найдете решения для парной регрессии (по рядам данных или корреляционной таблице, с разными дополнительными заданиями) и пару задач на определение и исследование коэффициента корреляции.

Примеры решений онлайн: линейная регрессия

Простая выборка

Пример 1. Имеются данные средней выработки на одного рабочего Y (тыс. руб.) и товарооборота X (тыс. руб.) в 20 магазинах за квартал. На основе указанных данных требуется:
1) определить зависимость (коэффициент корреляции) средней выработки на одного рабочего от товарооборота,
2) составить уравнение прямой регрессии этой зависимости.

Пример 2. С целью анализа взаимного влияния зарплаты и текучести рабочей силы на пяти однотипных фирмах с одинаковым числом работников проведены измерения уровня месячной зарплаты Х и числа уволившихся за год рабочих Y:
X 100 150 200 250 300
Y 60 35 20 20 15
Найти линейную регрессию Y на X, выборочный коэффициент корреляции.

Пример 3. Найти выборочные числовые характеристики и выборочное уравнение линейной регрессии $y_x=ax+b$. Построить прямую регрессии и изобразить на плоскости точки $(x,y)$ из таблицы. Вычислить остаточную дисперсию. Проверить адекватность линейной регрессионной модели по коэффициенту детерминации.

Пример 4. Вычислить коэффициенты уравнения регрессии. Определить выборочный коэффициент корреляции между плотностью древесины маньчжурского ясеня и его прочностью.
Решая задачу необходимо построить поле корреляции, по виду поля определить вид зависимости, написать общий вид уравнения регрессии Y на Х, определить коэффициенты уравнения регрессии и вычислить коэффициенты корреляции между двумя заданными величинами.

Пример 5. Компанию по прокату автомобилей интересует зависимость между пробегом автомобилей X и стоимостью ежемесячного технического обслуживания Y. Для выяснения характера этой связи было отобрано 15 автомобилей. Постройте график исходных данных и определите по нему характер зависимости. Рассчитайте выборочный коэффициент линейной корреляции Пирсона, проверьте его значимость при 0,05. Постройте уравнение регрессии и дайте интерпретацию полученных результатов.

Корреляционная таблица

Пример 6. Найти выборочное уравнение прямой регрессии Y на X по заданной корреляционной таблице

Пример 7. В таблице 2 приведены данные зависимости потребления Y (усл. ед.) от дохода X (усл. ед.) для некоторых домашних хозяйств.
1. В предположении, что между X и Y существует линейная зависимость, найдите точечные оценки коэффициентов линейной регрессии.
2. Найдите стандартное отклонение $s$ и коэффициент детерминации $R^2$.
3. В предположении нормальности случайной составляющей регрессионной модели проверьте гипотезу об отсутствии линейной зависимости между Y и X.
4. Каково ожидаемое потребление домашнего хозяйства с доходом $x_n=7$ усл. ед.? Найдите доверительный интервал для прогноза.
Дайте интерпретацию полученных результатов. Уровень значимости во всех случаях считать равным 0,05.

Пример 8. Распределение 100 новых видов тарифов на сотовую связь всех известных мобильных систем X (ден. ед.) и выручка от них Y (ден.ед.) приводится в таблице:
Необходимо:
1) Вычислить групповые средние и построить эмпирические линии регрессии;
2) Предполагая, что между переменными X и Y существует линейная корреляционная зависимость:
А) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений;
Б) вычислить коэффициент корреляции, на уровне значимости 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y;
В) используя соответствующее уравнение регрессии, оценить среднюю выручку от мобильных систем с 20 новыми видами тарифов.

Коэффициент корреляции

Пример 9. На основании 18 наблюдений установлено, что на 64% вес X кондитерских изделий зависит от их объема Y. Можно ли на уровне значимости 0,05 утверждать, что между X и Y существует зависимость?

Пример 10. Исследование 27 семей по среднедушевому доходу (Х) и сбережениям (Y) дало результаты: $\overline=82$ у.е., $S_x=31$ у.е., $\overline=39$ у.е., $S_y=29$ у.е., $\overline =3709$ (у.е.)2. При $\alpha=0,05$ проверить наличие линейной связи между Х и Y. Определить размер сбережений семей, имеющих среднедушевой доход $Х=130$ у.е.

Источник

Корреляционный анализ в Excel. Пример выполнения корреляционного анализа

Корреляционный анализ – это распространённый метод исследования, применяемый для определения уровня зависимости 1-й величины от 2-й. В табличном процессоре есть особый инструмент, который позволяет реализовать данный тип исследования.

Суть корреляционного анализа

Он необходим для определения зависимости между двумя разными величинами. Иными словами, происходит выявление того, в какую сторону (меньшую/большую) меняется величина в зависимости от изменений второй.

Назначение корреляционного анализа

Зависимость устанавливается тогда, когда начинается выявление коэффициента корреляции. Этот метод отличается от анализа регрессии, так как здесь только один показатель, рассчитываемый при помощи корреляции. Интервал изменяется от +1 до -1. Если она плюсовая, то повышение первой величины способствует повышению 2-й. Если минусовая, то повышение 1-й величины способствует понижению 2-й. Чем выше коэффициент, тем сильнее одна величина влияет на 2-ю.

Важно! При 0-м коэффициенте зависимости между величинами нет.

Расчет коэффициента корреляции

Разберем расчёт на нескольких образцах. К примеру, есть табличные данные, где по месяцам описаны в отдельных столбцах траты на рекламное продвижение и объём продаж. Исходя из таблицы, будем выяснять уровень зависимости объема продаж от денег, затраченных на рекламное продвижение.

Читайте также:  Подготовка реферата по вопросам занятия

Способ 1: определение корреляции через Мастер функций

КОРРЕЛ – функция, позволяющая реализовать корреляционный анализ. Общий вид – КОРРЕЛ(массив1;массив2). Подробная инструкция:

  1. Необходимо произвести выделение ячейки, в которой планируется выводить итог расчета. Нажать «Вставить функцию», находящуюся слева от текстового поля для ввода формулы.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza1

  1. Открывается «Мастер функций». Здесь необходимо найти КОРРЕЛ, кликнуть на нее, затем на «ОК».

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza2

  1. Открылось окошко аргументов. В строку «Массив1» необходимо ввести координаты интервалы 1-го из значений. В рассматриваемом примере — это столбец «Величина продаж». Нужно просто произвести выделение всех ячеек, которые находятся в этой колонке. В строку «Массив2» аналогично необходимо добавить координаты второй колонки. В рассматриваемом примере — это столбец «Затраты на рекламу».

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza3

  1. После введения всех диапазонов кликаем на кнопку «ОК».

Коэффициент отобразился в той ячейке, которая была указана в начале наших действий. Полученный результат 0,97. Этот показатель отображает высокую зависимость первой величины от второй.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

4

Способ 2: вычисление корреляции с помощью Пакета анализа

Существует еще один метод определения корреляции. Здесь используется одна из функций, находящаяся в пакете анализа. Перед ее использованием нужно провести активацию инструмента. Подробная инструкция:

  1. Переходим в раздел «Файл».

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza5

  1. Открылось новое окошко, в котором нужно кликнуть на раздел «Параметры».
  2. Жмём на «Надстройки».
  3. Находим в нижней части элемент «Управление». Здесь необходимо выбрать из контекстного меню «Надстройки Excel» и кликнуть «ОК».

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza6

  1. Открылось специальное окно надстроек. Ставим галочку рядом с элементом «Пакет анализа». Кликаем «ОК».
  2. Активация прошла успешно. Теперь переходим в «Данные». Появился блок «Анализ», в котором необходимо кликнуть «Анализ данных».
  3. В новом появившемся окошке выбираем элемент «Корреляция» и жмем на «ОК».

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza7

  1. На экране появилось окошко настроек анализа. В строчку «Входной интервал» необходимо ввести диапазон абсолютно всех колонок, принимающих участие в анализе. В рассматриваемом примере — это столбики «Величина продаж» и «Затраты на рекламу». В настройках отображения вывода изначально выставлен параметр «Новый рабочий лист», что означает показ результатов на другом листе. По желанию можно поменять локацию вывода результата. После проведения всех настроек нажимаем на «ОК».

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza8

Вывелись итоговые показатели. Результат такой же, как и в первом методе – 0,97.

Определение и вычисление множественного коэффициента корреляции в MS Excel

Для выявления уровня зависимости нескольких величин применяются множественные коэффициенты. В дальнейшем итоги сводятся в отдельную табличку, именуемую корреляционной матрицей.

  1. В разделе «Данные» находим уже известный блок «Анализ» и жмем «Анализ данных».

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza9

  1. В отобразившемся окошке жмем на элемент «Корреляция» и кликаем на «ОК».
  2. В строку «Входной интервал» вбиваем интервал по трём или более столбцам исходной таблицы. Диапазон можно ввести вручную или же просто выделить его ЛКМ, и он автоматически отобразится в нужной строчке. В «Группирование» выбираем подходящий способ группировки. В «Параметр вывода» указывает место, в которое будут выведены результаты корреляции. Кликаем «ОК».

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza10

  1. Готово! Построилась матрица корреляции.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza11

Коэффициент парной корреляции в Excel

Разберем, как правильно проводить коэффициент парной корреляции в табличном процессоре Excel.

Расчет коэффициента парной корреляции в Excel

К примеру, у вас есть значения величин х и у.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza12

Х – это зависимая переменна, а у – независимая. Необходимо найти направление и силу связи между этими показателями. Пошаговая инструкция:

  1. Выявим средние показатели величин при помощи функции СРЗНАЧ.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza13

  1. Произведем расчет каждого х и хсредн, у и усредн при помощи оператора «-».

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza14

  1. Производим перемножение вычисленных разностей.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza15

  1. Вычисляем сумму показателей в этом столбце. Числитель – найденный результат.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza16

  1. Посчитаем знаменатели разницы х и х-средн, у и у-средн. Для этого произведем возведение в квадрат.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza17

  1. Используя функцию АВТОСУММА, найдем показатели в полученных столбиках. Производим перемножение. При помощи функции КОРЕНЬ возводим результат в квадрат.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza18

  1. Производим подсчет частного, используя значения знаменателя и числителя.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza19 korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza20

  1. КОРРЕЛ – интегрированная функция, которая позволяет предотвратить проведение сложнейших расчетов. Заходим в «Мастер функций», выбираем КОРРЕЛ и указываем массивы показателей х и у. Строим график, отображающий полученные значения.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza21

Матрица парных коэффициентов корреляции в Excel

Разберем, как проводить подсчет коэффициентов парных матриц. К примеру, есть матрица из четырех переменных.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

22

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

  1. Заходим в «Анализ данных», находящийся в блоке «Анализ» вкладки «Данные». В отобразившемся списке выбираем «Корелляция».
  2. Выставляем все необходимые настройки. «Входной интервал» – интервал всех четырех колонок. «Выходной интервал» – место, в котором желаем отобразить итоги. Кликаем на кнопку «ОК».
  3. В выбранном месте построилась матрица корреляции. Каждое пересечение строки и столбца – коэффициенты корреляции. Цифра 1 отображается при совпадающих координатах.
Читайте также:  Скачать Сrack для программы STATISTICA

23

Функция КОРРЕЛ для определения взаимосвязи и корреляции в Excel

КОРРЕЛ – функция, применяемая для подсчета коэффициента корреляции между 2-мя массивами. Разберем на четырех примерах все способности этой функции.

Примеры использования функции КОРРЕЛ в Excel

Первый пример. Есть табличка, в которой расписана информация об усредненных показателях заработной платы работников компании на протяжении одиннадцати лет и курсе $. Необходимо выявить связь между этими 2-умя величинами. Табличка выглядит следующим образом:

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

24

Алгоритм расчёта выглядит следующим образом:

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

25

Отображенный показатель близок к 1. Результат:

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

26

Определение коэффициента корреляции влияния действий на результат

Второй пример. Два претендента обратились за помощью к двум разным агентствам для реализации рекламного продвижения длительностью в пятнадцать суток. Каждые сутки проводился социальный опрос, определяющий степень поддержки каждого претендента. Любой опрошенный мог выбрать одного из двух претендентов или же выступить против всех. Необходимо определить, как сильно повлияло каждое рекламное продвижение на степень поддержки претендентов, какая компания эффективней.

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

27

Используя нижеприведенные формулы, рассчитаем коэффициент корреляции:

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

28

Из полученных результатов становится понятно, что степень поддержки 1-го претендента повышалась с каждыми сутками проведения рекламного продвижения, следовательно, коэффициент корреляции приближается к 1. При запуске рекламы другой претендент обладал большим числом доверия, и на протяжении 5 дней была положительная динамика. Потом степень доверия понизилась и к пятнадцатым суткам опустилась ниже изначальных показателей. Низкие показатели говорят о том, что рекламное продвижение отрицательно повлияло на поддержку. Не стоит забывать, что на показатели могли повлиять и остальные сопутствующие факторы, не рассматриваемые в табличной форме.

Анализ популярности контента по корреляции просмотров и репостов видео

Третий пример. Человек для продвижения собственных роликов на видеохостинге Ютуб применяет соцсети для рекламирования канала. Он замечает, что существует некая взаимосвязь между числом репостов в соцсетях и количеством просмотров на канале. Можно ли про помощи инструментов табличного процессора произвести прогноз будущих показателей? Необходимо выявить резонность применения уравнения линейной регрессии для прогнозирования числа просмотров видеозаписей в зависимости от количества репостов. Табличка со значениями:

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

29

Теперь необходимо провести определение наличия связи между 2-мя показателями по нижеприведенной формуле:

0,7;ЕСЛИ(КОРРЕЛ(A3:A8;B3:B8)>0,7;”Сильная прямая зависимость”;”Сильная обратная зависимость”);”Слабая зависимость или ее отсутствие”)’ >

Если полученный коэффициент выше 0,7, то целесообразней применять функцию линейной регрессии. В рассматриваемом примере делаем:

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

30

Теперь производим построение графика:

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

31

Применяем это уравнение, чтобы определить число просматриваний при 200, 500 и 1000 репостов: =9,2937*D4-206,12. Получаем следующие результаты:

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

32

Функция ПРЕДСКАЗ позволяет определить число просмотров в моменте, если было проведено, к примеру, двести пятьдесят репостов. Применяем: 0,7;ПРЕДСКАЗ(D7;B3:B8;A3:A8);”Величины не взаимосвязаны”)’ >. Получаем следующие результаты:

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

33

Особенности использования функции КОРРЕЛ в Excel

Данная функция имеет нижеприведенные особенности:

  1. Не учитываются ячейки пустого типа.
  2. Не учитываются ячейки, в которых находится информация типа Boolean и Text.
  3. Двойное отрицание «–» применяется для учёта логических величин в виде чисел.
  4. Количество ячеек в исследуемых массивах обязаны совпадать, иначе будет выведено сообщение #Н/Д.

Оценка статистической значимости коэффициента корреляции

При проверке значимости корреляционного коэффициента нулевая гипотеза состоит в том, что показатель имеет значение 0, а альтернативная не имеет. Для проверки применяется нижеприведенная формула:

korrelyacionnyj-analiz-v-excel-primer-vypolneniya-korrelyacionnogo-analiza

34

Заключение

Корреляционный анализ в табличном процессоре – это простой и автоматизированный процесс. Для его выполнения необходимо знать всего лишь, где находятся нужные инструменты и как их активировать через настройки программы.

Источник



Основы корреляционного анализа. Примеры анализа прямолинейной связи при парной корреляции

Исследование объективно существующих связей между явлениями — важнейшая задача статистики. В процессе статистического исследования зависимостей выявляются причинно-следственные отношения между явлениями. Причинно-следственные отношения — это такая связь явлений и процессов, когда изменение одного из них — причины ведет к изменению другого — следствия.

Признаки явлений и процессов по их значению для изучения взаимосвязи делятся на два класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называют факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, называют результативными.

В статистике различают функциональные и стохастические (вероятностные) связи явлений и процессов:

  • Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно значение результативного.
  • Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической (вероятностной). Частным случаем стохастической связи является корреляционная связь.

Кроме того, связи между явлениями и их признаками классифицируются по степени тесноты, направлению и аналитическому выражению.

По направлению выделяют связь прямую и обратную:

  • Прямая связь — это такая связь, при которой с увеличением (уменьшением) значений факторного признака происходит увеличение (уменьшение) значений результативного. Так, например, рост производительности труда способствует увеличению уровня рентабельности производства.
  • В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака. Так с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.

По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные:

  • Если статистическая связь между явлениями может быть приблизительно выражена уравнением прямой линии, то ее называют линейной связью вида: у=а+bх.
  • Если же связь может быть выражена уравнением какой-либо кривой линии (параболы, гиперболы и др.), то такую связь называют нелинейной (криволинейной) связью.

Теснота связи показывает меру влияния факторного признака на общую вариацию результативного признака. Классификация связи по степени тесноты представлена в таблице 1.

Для выявления наличия связи, ее характера и направления в статистике используются следующие методы: приведения параллельных данных, аналитических группировок, графический, корреляции. Основным методом изучения статистической взаимосвязи является статистическое моделирование связи на основе корреляционного и регрессионного анализа.

Корреляция — это статистическая зависимость между случайными величинами, не имеющая строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой. В статистике принято различать следующие виды корреляции:

  • парная корреляция — связь между двумя признаками (результативным и факторным, или двумя факторными);
  • частная корреляция — зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков;
  • множественная корреляция — зависимость результативного и двух или более факторных признаков, включенных в исследование.

Задачей корреляционного анализа является количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).

Теснота связи количественно выражается величиной коэффициентов корреляции, которые давая количественную характеристику тесноты связи между признаками, позволяют определять «полезность» факторных признаков при построении уравнения множественной регрессии.

Корреляция взаимосвязана с регрессией, поскольку первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму.

Регрессионный анализ заключается в определении аналитического выражения связи в виде уравнения регрессии.

Регрессией называется зависимость среднего значения случайной величины результативного признака от величины факторного, а уравнением регрессии – уравнение описывающее корреляционную зависимость между результативным признаком и одним или несколькими факторными.

Формулы корреляционно-регрессионного анализа для прямолинейной связи при парной корреляции представлены в таблице 2.

2012 © Лана Забродская. При копировании материалов сайта ссылка на источник обязательна

Источник

Пример. Вычисление коэффициентов парной, множествен­ной и частной корреляции

Пример. Вычисление коэффициентов парной, множествен­ной и частной корреляции.

В таблице 5.3.1 представлена информация об объемах продаж и затратах на рекламу одной фирмы, а также индекс потребительских расходов за ряд текущих лет.

Определить степень влияния индекса потребительских расходов на объем продаж (вычислить коэффициент парной корре­ляции). Оценить значимость вычисленного коэффициента парной корреляции. Построить матрицу коэффициентов парной корреляции по трем переменным. Найти оценку множественного коэффициента корреляции. Найти оценки коэффициентов частной корреляции.

Затраты на рекламу (Х1)

Индекс потребит. расходов %(Х2)

Затраты на рекламу (Х1)

Индекс потребит. расходов % (Х2)

Вычислим коэффициент корреляции между переменными Х2 (индекс потребительских расходов) и У (объем продаж).

Средние значения случайных величин Х2 и У, характеризующие последовательности х1, х2, …,х16 и у1, у2, …,у16, рассчитаем по формулам:

=107,23; =306,81

Дисперсии характеризуют степень разброса значений х1, х2, …,х16 и у1, у2, …,у16 вокруг своего среднего ( соответственно):

Sx2=

Sy2==10581,23

Стандартные ошибки случайных величин Х2 и У рассчитываем по формулам:

Sx==4,51; Sy==102,87.

Коэффициент парной корреляции:

ry, x===0,816

Оценка значимости коэффициента корреляции.

Находим значение t-статистики:

tрасч==5,282.

Табличное значение критерия Стьюдента tтабл (б=0,1; х=n-2=14) равно1,7613. Сравниваем числовые значения критериев: tрасч > tтабл, т. е. полученное значение коэффициента корреляции значимо.

Таким образом, индекс потребительских расходов оказывает весьма высокое влияние на объем продаж.

Матрица R коэффициентов парной корреляции для трех факторов:

R=

Множественный коэффициент корреляции У с Х1 и Х2:

R1,2,3==0,9269,

где — определитель корреляционной матрицы R – равен 0,1304, R11 –алгебраическое дополнение элемента r11 матрицы R равен 0,925.

Коэффициент частной корреляции:

r12(3)= — =0,706;

r12(3)= — =0,871,

где R12, R13 –алгебраические дополнения элемента r12, r13 матрицы R, а R22 –алгебраическое дополнение элемента r22 матрицы R.

Для решения примера средствами Excel, можно воспользоваться функцией =КОРРЕЛ(), указав адреса двух столбцов чисел.

(Примечание. Аргументы функции =КОРРЕЛ() должны быть числами или именами, массивами или ссылками, содержащими числа. Если массив1 и массив2 имеют различное количество точек данных, то функция КОРРЕЛ возвращает значение ошибки # н/д. Если массив1 или массив2 пуст или если у (стандартное отклонение) их значений равно нулю, то функция КОРРЕЛ возвращает значение ошибки # дел/ у!).

Критическое значение t-статистики Стьюдента может быть получено с помощью функции СТЬЮДРАСПРОБР пакета Excel. В качестве аргументов функции необходимо задать число степеней свободы равное n-2 и уровень значимости б (0,1; 0,05).

Пример. Оценить тесноту связи между объемом выпуска продукции и температурой определенного технологического процесса. Данные, полученные в результате эксперимента, представлены в таблице 5.4.1.

Источник