Меню

Ряды динамики понятие и классификация Показатели уровней ряда динамики Примеры решения задач

13 Ряды динамики

Статистическое изучение динамики социально-экономических явлений

Статистика динамики

Процессы и явления социально-экономической жизни общества, являющиеся предметом изучения статистики, находятся в постоянном движении и изменении. Для того, чтобы выявить тенденции и закономерности социально-экономического развития явлений, статистика строит особые ряды статистических показателей, которые называются рядами динамики (иногда их называют временными рядами), то есть ‑ это ряды изменяющихся во времени значений статистического показателя, расположенных в хронологическом порядке. В англоязычной литературе для временных рядов используется термин «time series». Ряды динамики получаются в результате сводки и обработки материалов периодического статистического наблюдения. Повторяющиеся во времени (по отчетным периодам) значения одноименных показателей в ходе статистической сводки систематизируются в хронологической последовательности. Значения показателя, составляющие ряд динамики, называются уровнями ряда.

Каждый ряд динамики характеризуется двумя параметрами: значениями времени и соответствующими им значениями уровней ряда. Уровни ряда обычно обозначаются «yt»: y1, y2 и т.д. В качестве показателя времени в рядах динамики могут указываться отдельные периоды (сутки, месяцы, кварталы, годы и т.д.) времени или определенные моменты (даты). Время в рядах динамики обозначается через «t».

Ряд динамики состоит из двух элементов:

1) уровня ряда (значения изучаемого показателя);

2) моментов (периодов) времени, когда фиксируется этот показатель.

Основные способы обработки рядов динамики:

1) укрупнение интервалов и расчет для них средних показателей;

2) сглаживание уровней способом скользящей средней;

3) выравнивание по аналитическим формулам.

Суть последнего способа заключается в том, что по эмпирическим данным находят теоретические (вероятностные) уровни, которые рассматриваются как некая функция времени.

Ряды динамики, как правило, представляют в виде таблицы или графически.

Ряды динамики могут быть классифицированы по следующим признакам:

В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных, относительных и средних величин. При этом ряды динамики абсолютных величин рассматриваются как исходные, а ряды относительных и средних величин ‑ как производные.

Ряды динамики абсолютных величин наиболее полно характеризуют развитие процесса или явления, например, грузооборота транспорта, инвестиций в основной капитал, добычи топлива, уставного капитала коммерческих банков и т.д.

Ряды относительных величин могут характеризовать во времени темпы роста (или снижения) определенного показателя; изменение удельного веса того или иного показателя в совокупности или изменение показателей интенсивности отдельных явлений, например, удельного веса приватизированных предприятий в той или иной отрасли; производ­ства продукции на душу населения; структуры инвестиций в основной капитал по отраслям экономики, индекса потребительских цен и т.д.

Ряды динамики средних величин служат для характеристики изменения уровня явления, отнесенного к единице совокупности, например: данные о среднегодовой численности занятых в экономике; о средней урожайности отдельных сельскохозяйственных культур, о средней заработной плате в отдельных отраслях и т.д.

В зависимости от характера временного параметра ряды динамики делятся на моментные и интервальные.

Уровни моментных рядов динамики характеризуют явление по состоянию на определенный момент времени.

Пример. Моментный ряд динамики, характеризующий численность персонала строительной фирмы на 1-е число каждого месяца за первое полугодие 2009 г., представлен в таблице 13.1.

Таблица 13.1 ‑ Численность персонала строительной фирмы на 1-е число каждого месяца за первое полугодие 2009 г

Дата 1.01 1.02 1.03 1.04 1.05 1.06
Численность персонала, чел. 780 810 880 930 940 970

Следует помнить, что моментные ряды абсолютных величин нельзя суммировать. Бессмысленно, например, складывать численность персонала по состоянию на 1 января, 1 февраля и т.д. Полученная сумма ничего не выражает, так как в ней многократно повторяются одни и те же единицы совокупности.

Ряд, в котором уровни характеризуют результат, накопленный или вновь произве­денный за определенный интервал времени, называется интервальным.

Пример. Интервальный ряд динамики, представлен в таблице 13.2.

Таблица 13.2. ‑ Характеристика динамики объема розничного товарооборота

Дата 2004 2005 2006 2007 2008
Товарооборот, млн. руб. 28,3 31,9 38,3 42,3 45,2

Важное аналитическое отличие моментных рядов от интервальных состоит в том, что сумма уровней интервального ряда вполне реальный показатель, например, общий объем розничного товарооборота за 2004-2008 г.г.

В зависимости от расстояния между уровнями, ряды динамики подразделяются на ряды с равноотстоящими уровнями и не равноотстоящими уровнями во времени.

Ряды динамики следующих друг за другом периодов или следующих через оп­ределенные промежутки дат называются равноотстоящими, пример (табл. 13.1 и табл. 13.2).

Если же в рядах даются прерывающиеся периоды или неравномерные промежутки между датами, то ряды называются не равноотстоящими, пример(табл. 13.3).

Пример. Рядом динамики с не равноотстоящими уровнями во времени может служить объем экспорта продукции предприятия, представленный в таблице 13.3.

Таблица 13.3. – Динамика объема экспорта продукции предприятия

Годы 1993 1996 1998 2000 2004
Объем экспорта, млн. долл. 1110 1220 1320 1450 1640

По числу показателей можно выделить изолированные (одномерные) и комплексные (многомерные) ряды динамики.

Если ведется анализ во времени одного показателя ряда, то ряд динамики изолированный (например, данные о производст­ве газа по годам). В многомерном ряду представлена динамика нескольких показателей, характеризующих одно явление.

Сопоставимость уровней и смыкание рядов динамики

Важнейшим условием правильного построения рядов динамики является сопоста­вимость всех входящих в него уровней. Данное условие решается либо в процессе сбора и обработки данных, либо путем их пересчета.

Рассмотрим основные причины несопоставимости уровней ряда динамики.

Несопоставимость уровней ряда может возникнуть вследствие изменения единиц измерения и единиц счета.

Читайте также:  Как сдать РСВ на прямых выплатах

Пример. Нельзя сравнивать и анализировать цифры о производстве тканей, если за одни годы оно дано в погонных метрах, а за другие ‑ в квадратных метрах.

На сопоставимость уровней ряда динамики непосредственно влияет методоло­гия учета или расчета показателей.

Например, если в одни годы среднюю урожайность считали с засеянной площади, а в другие ‑ с убранной, то такие уровни будут не­сопоставимы.

В процессе развития во времени, прежде всего, происходят количественные измерения явлений, а затем на определенных ступенях совершаются качественные скачки, приводящие к изменению закономерностей явления. Поэтому научный подход к изучению рядов динамики заключается в том, чтобы ряды, охватывающие большие периоды времени, разделять на такие, которые бы объединяли лишь однокачественные периоды развития совокупности, характеризующейся одной закономерностью развития.

Важно также, чтобы в ряду динамики интервалы или моменты, по которым определены уровни, имели одинаковый экономический смысл.

Например, при изучении роста поголовья скота бессмысленно сравнивать цифры поголовья по состоянию на 1 октября с данными 1 января, так как первая цифра включает не только скот, оставшийся на зимовку, но и предназначенный к убою, а вторая цифра включает только скот, оставленный на зимовку. Уровни ряда динамики могут оказаться несопоставимыми по кругу охватываемых объектов вследствие перехода ряда объектов из одного подчинения в другое.

Несопоставимость уровней ряда может возникнуть вследствие изменений территориальных границ областей, районов и так далее.

Для того, чтобы привести уровни ряда динамики к сопоставимому виду, иногда приходится прибегать к приему, который носит название смыкание рядов динамики. Под смыканием понимают объединение в один ряд (более длинный) двух или нескольких рядов динамики, уровни которых являются несопоставимыми. Для осуществления смыкания необходимо, чтобы для одного из периодов (переходного) имелись данные, исчисленные по разной методологии (или в разных границах).

Пример. Предположим, что в N-ом регионе имеются данные об общем объеме оборота розничной торговли за 2013-2015 гг. в фактически действующих ценах, и за 2015-2018 гг. ‑ в сопоставимых ценах (табл. 13.4.).

Таблица 13.4 ‑ Динамика общего объема оборота розничной торговли (млрд. руб.) цифры условные

Источник

Ряды динамики: понятие и классификация. Показатели уровней ряда динамики. Примеры решения задач

Процесс развития, движения социально-экономических явлений во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики (хронологические, временные), которые представляют собой ряды изменяющихся во времени значений статистического показателя, расположенных в хронологическом порядке.

Составными элементами ряда динамики являются показатели уровней ряда и показатели времени (годы, кварталы, месяцы, сутки) или моменты (даты) времени. Уровни ряда обычно обозначаются через «y», моменты или периоды времени, к которым относятся — через «t».

Существуют различные виды рядов динамики, которые классифицируют по следующим признакам:

  • В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных, относительных и средних величин.
  • В зависимости от того выражают уровни ряда состояние явления на определенные моменты времени (на начало месяца, квартала, года и т.п.) или его величину за определенные интервалы времени (например, за сутки, месяц, год и т.п.), различают соответственно моментные и интервальные ряды динамики.
  • В зависимости от расстояния между уровнями, ряды динамики подразделяются на ряды с равноотстоящими уровнями и неравноотстоящими уровнями во времени. Ряды динамики следующих друг за другом периодов или следующих через определенные промежутки дат называется равноотстоящими. Если же в рядах даются прерывающиеся периоды или неравномерные промежутки между датами, то ряды называются неравноотстоящими.
  • В зависимости от наличия основной тенденции изучаемого процесса ряды динамики подразделяются на стационарные и нестационарные. Если математическое ожидание значения признака и дисперсия (основные характеристики случайного процесса) — постоянны, не зависят от времени, то процесс считается стационарным, и ряды динамики также называются стационарными. Экономические процессы во времени обычно не являются стационарными, т.к. содержат основную тенденцию развития, но их можно преобразовать в стационарные путем исключения тенденций.

Показатели изменения уровней ряда динамики

Анализ скорости и интенсивности развития явления во времени осуществляется с помощью статистических показателей, возникающих в результате сравнения уровней между собой. К таким показателям относятся: абсолютный прирост, темп роста и прироста, абсолютное значение одного процента прироста. При этом принято сравниваемый уровень называть отчетным, а уровень, с которым происходит сравнение — базисным.

Абсолютный прирост (Δу) характеризует размер увеличения (или уменьшения) уровня ряда за определенный промежуток времени. Он равен разности двух сравниваемых уровней и выражает абсолютную скорость роста: Δy = уi-yi-k (i=1,2,3. n). Если k=1, то уровень yi-1 является предыдущим для данного уровня, а абсолютные приросты изменения уровня будут цепными. Если же k постоянны для данного ряда, то абсолютные приросты будут базисными.

Показатель интенсивности изменения уровня ряда — в зависимости от того, выражается ли он в виде коэффициента или в процентах, принято называть коэффициентом роста (темпом роста). Темп роста (t) показывает во сколько раз данный уровень ряда больше базисного уровня (если этот коэффициент больше единицы) или какую часть базисного уровня составляет уровень текущего периода за некоторый промежуток времени (если он меньше единицы): t = yi / yi-1или t = yi / y1

Темпа прироста (Δt), характеризует относительную скорость изменения уровня ряда в единицу времени. Темп прироста показывает, на какую долю (или процент) уровень данного периода или момента времени больше (или меньше) базисного уровня. Находят темп прироста как отношение абсолютного прироста к уровню ряда, принятого за базу: Δt = Δy / yi-1 или Δt = Δy / y1 или Δt = t-1 (Δt = t-100%). Если темп роста всегда положительное число, то темп прироста может быть положительным, отрицательным и равным нулю.

В статистической практике часто вместо расчета и анализа темпов роста и прироста рассматривают абсолютное значение одного процента прироста (А). Оно представляет собой одну сотую часть базисного уровня и в то же время — отношение абсолютного прироста к соответствующему темпу прироста: А= Δy /( Δt*100) = yi-1/100

Средний уровень ряда динамики рассчитывается по средней хронологической. Средней хронологической называется средняя, исчисленная из значений, изменяющихся во времени. Такие средние обобщают хронологическую вариацию. В хронологической средней отражается совокупность тех условий, в которых развивалось изучаемое явление в данном промежутке времени. Формулы для вычисления средних показателей ряда динамики представлены в таблице.

Примеры решения задач по теме «Ряды динамики в статистике»

Задача 1. Данные о площадях под картофелем до и после изменения границ района, тысяч гектаров:

таблица

Сомкнуть ряд, выразив площадь под картофелем в условиях изменения границ района.

Решение

таблица

Примем за базу сравнения третий период – период, за который есть данные как в прежних, так и в старых границах района. Затем эти два ряда с одинаковой базой смыкаем в один.

Задача 2. Имеется информация об экспорте продукции из региона за ряд лет:

таблица

Определить: 1) цепные и базисные: а) абсолютные приросты; б) темпы роста; в) темпы прироста; 2)абсолютное содержание одного процента прироста; 3) средние показатели: а) средний уровень ряда; б) среднегодовой абсолютный прирост; в) среднегодовой темп роста; г) среднегодовой темп прироста.

Решение

Напомним, что:
— если каждый текущий уровень сравнивать с предыдущим, то мы получим цепные показатели;
— если каждый текущий уровень сравнивать с первоначальным, то получим базисные показатели.

Для решения расширим предложенную таблицу.

таблица

Средний уровень ряда определим по средней арифметической простой: Уср=202467:4=50616,75 тыс. долларов США.

Среднегодовой абсолютный прирост определим по формуле:

формула

= (64344-42376) / (4-1) = 7322,67 тыс. долларов США.

Среднегодовой темп роста определим по формуле:

формула

= 3 √(64344:42376) = 1,15=115%

Среднегодовой темп прироста определим по формуле:

формула

Задача 3. По следующей информации определить средний размер имущества предприятия за квартал:

формула

Решение

Средний размер имущества предприятия за квартал определим по формуле:

формула

= (30/2 +40 +50 +30/2) / (4-1) = 40 млн. руб.

Другие статьи по данной теме:

  • назад:Выборочное наблюдение: понятие, виды, ошибки выборки, оценка результатов
  • далее:Экономические индексы в статистике: понятие, виды, формулы. Примеры решения задач

Список использованных источников

2012 © Лана Забродская. При копировании материалов сайта ссылка на источник обязательна

Источник



Ряды динамики в статистике

Чтобы получить выраженные в числах изменения социальной и экономической среды, в статистике применяются разные методы. Среди них выделяется упорядочивание данных с использованием временной последовательности. Ряд динамики — это статистические значения в хронологическом порядке.

Ряд динамики может состоять из:

  • значений, связанных с определенным моментом, – датой, днем, и др.;
  • данных, связанных с периодом времени. Уровень ряда динамики это и есть полученный показатель.

Виды рядов динамики

Объединение радов происходит по:

  • Времени. Это моментные и интервальные ряды.
  • Форме представления. К ним относятся абсолютные, относительные и средние величины.
  • Интервалам времени. Подразделяются на равномерные и неравномерные ряды.
  • Числу смысловых статистических величин. Это изолированные и комплексные ряды.

Чтобы без ошибок построить динамические ряды, необходимо сопоставлять уровни рядов разных периодов. Для этого у них должны быть однородные величины. Также ряды предполагают охват явления с одинаковой полнотой.

Не допускать погрешностей в анализе динамики помогает смыкание рядов динамики. Суть понятия в проведении подготовительной работы до основных расчетов. Во время подготовки ряды объединяются в один. Уровни этих рядов рассчитаны по разным методологиям. Смыкание также включает преобразования, при которых абсолютные уровни рядов приводятся к общему основанию. Это действие помогает избежать несопоставимости уровней.

Анализ показателей в рядах динамики

Ряд динамики характеризует изменения данных внутри этого ряда. Статистические данные необходимо сравнивать также между рядами. По формулам можно определить основные показатели.

Разность уровней ряда динамики называется абсолютным приростом. Показатель демонстрирует, на сколько изменился каждый последующий уровень.

∆ У Ц = У i — У i — 1 ,

где У i — уровень У 1 — У Ц ,

У i — 1 — уровень предыдущего периода.

Отношение уровней ряда динамики называется темпом (коэффициентом) роста. По нему видно, во сколько раз изменились последовательные значения.

τ p = У i У i — 1 ,

где У 1 — начальный уровень ряда.

Темп прироста. Показывает процентное отличие между последовательными уровнями.

Если сравнивать между собой числа без всякой системы, не получится грамотно проанализировать ситуацию и выстроить новую стратегию. Например, продвижение продукта на основе маркетинговой стратегии. Использование формул поможет высчитать, какую прибыль принесло компании конкретное решение за анализируемый период.

Анализ показателей за длительный промежуток

Если есть задача оценить изменения, которые касаются длинного временного отрезка, эффективно применить средние показатели. В статистике для их определения используются следующие понятия.

Средний уровень ряда динамики. Применим для интервальных равноотстоящих рядов

где n — число уровней ряда.

Если ряды неравноотстоящие, средний уровень интервального ряда динамики определяется как

где t — длина интервалов времени между уровнями.

Использование перечисленных методов позволяет применять полученные значения в экономике. Определять эффективность финансовых вложений, прогнозировать результаты. В управление предприятиями и бухгалтерию также можно внедрить данные методы для планирования и распределения бюджета.

Источник

Ряды динамики в статистике — виды, формулы и расчеты показателей

Ряды динамики в статистике помогают отслеживать и анализировать изменение каких-либо собранных показателей с течением временем.

Форма представления может отличаться, но принципы обработки остаются неизменными.

Понятие ряда динамики в статистике

Подразумевается совокупность чисел, описывающая состояние интересующего фактора. При этом должна соблюдаться хронологическая последовательность с образованием временного ряда.

Ряд может быть подан в виде таблицы. Например, ниже указано население в миллионах человек по годам на 1-е февраля.

Представляется более наглядной и динамической графическая интерпретация, показанная на рисунке ниже:

Виды рядов динамики в статистике

Разделяют последовательности по временным показателям и по представлению чисел:

Отсечка производится по конкретному отрезку времени (моментный ряд) или суммируется за какой-то промежуток (интервальный ряд). В приведенном примере – первый случай. Показано состояние на определенную дату. Попытка что-то просуммировать даст бессмысленное число. Второй способ актуален, если, например, характеризуется выпуск товаров за неделю, месяц, квартал.

С постоянным или изменяющимся временным отрезком. В нашем случае отображаются регулярные годовые замеры.

Показаны абсолютные, средние или относительные безразмерные числа. У нас иллюстрируется количество живущих в государстве людей без каких-либо алгебраических вмешательств.

По сути показателей. Может сопоставляться курс валюты (одномерный критерий), а может состоять из объемов закупки разных валют (многомерный). В примере фигурирует только одна величина.

Уровни рядов динамики

Понятие «уровень» относится к интересующим замеренным числам. В расчетной документации в большинстве случаев зашифровываются латинской литерой «y».

Базисный или первый уровень подразумевает начальное число в таблице, конечный – последнее. Все, что связано со временем фиксации факта, скрывается под «t».

Расчеты среднего уровня в рядах динамики

Существуют случаи, когда требуются какие-то резюмирующие значения. Среднее – из таких. При этом методики его определения для разных видов рядов отличаются.

Интервальный ряд динамики

В этом случае требуется просто поиск среднего арифметического. Таким образом можно показать какие-то сезонные колебания производства, продаж.

Рассчитать можно по формуле:

n – их количество.

В нашем случае подобная цифирь полезной нагрузки не несет, только для наглядности:

(144,2 + … + 141,9) / 6 = 866,6 / 6 = 142,77.

Таково среднее население за 5 лет.

Моментный ряд динамики

Если разрыв в датах неизменен, то можно записать последовательность в средних значениях. Получим (n – 1) чисел такого вида

После нехитрых выкладок обнаруживаем, что

y(1), y(n) – базисный и конечный уровни;

((141.2 + 141,9) / 2 + 143,5 + … + 142) / 5 = (143,05 + 570,5) / 2 = 142,71.

Мы получили среднее хронологическое.

Но это для равных отрезков. Когда они меняются, необходимо учитывать временной фактор. Если уровни меняются с течением времени, то выводится такое:

Выражение несколько упрощается, если уровни постоянны до следующей отсечки.

t(i) – длительность периода, когда уровень i зафиксирован.

Показатели анализа рядов динамики

Методы анализа сводятся к видоизменению полученных данных к виду, облегчающему отслеживание динамики и выявляющему ее направленность. Так или иначе придется сопоставлять уровни для понимания темпов роста / убыли.

Для оценки применяются абсолютные (вычитание уровней) и относительные (отношение уровней ряда) величины.

Базисные показатели можно получить, если сравнивать с первым элементом. Цепные показатели – с соседними.

Это базисная и цепная абсолютные разницы соответственно.

То же в относительном выражении. В таком виде мы получим характеристику в виде коэффициента. Для более наглядного представления следует умножить на «100» и получить %%.

Надо заметить, что цепные критерии имеют свойства накапливаться и переходить в базисные:

И самые важные для оценки параметров динамики понятия — темпы:

Опять же в абсолютном и относительных видах. Если речь идет об анализе плавной кривой, то отношение заменит производная, указывающая на тангенс угла наклона касательной прямой.

Об усредненных величинах мы уже говорили. Стоит немного вернуться и рассмотреть их в связи с темпами:

Так выглядят базисный и цепной средние темпы прироста:

А вот так в относительных единицах.

Теперь на основании изложенного дополним нашу исходную таблицу и сделаем напрашивающиеся выводы.

Вполне очевидно, что отрицательные значения абсолютных величин и менее 1 относительные указывают на падение населения. При этом темпы роста ниже 0, и это указывает на сохранение неблагоприятной тенденции.

Методы выравнивания рядов динамики

Выравнивание используется для определения общего направления динамики процессов. Кратковременные случайные всплески роста / падения иногда нарушают целостность восприятия картины.

Ещё можно заметить, что:

Увеличение периодов позволяет построить данные таким образом, чтобы изменения явно демонстрировали основную линию. Выравниваются средние значения.

Плавающая средняя означает, что она подсчитывается из определенного числа соседних уровней. По новым правилам построения организуется новый ряд из средних. Метод оптимален, если графическая интерпретация близка к прямой. В противном случае искажение динамики может оказаться чрезмерным.

Аналитический метод сводится к аппроксимации параметров математическим уравнением с высокой корреляцией. Дальнейшая работа базируется на нем. Так легче выявить тенденцию, можно позволить какие-то прогнозы. Облегчается использование численных методов.

Заключение

Ряды динамики позволяют понятными способами анализировать полученные данные. Наглядными становятся происходящие изменения.

Ситуация становится еще более ясной на графиках с представлением средних, различий, темпов роста / падения.

Источник