Меню

Шпаргалки по математике алгебре и геометрии

Все формулы по математике. Скачать

Все формулы для подготовки к ЕГЭ по математике в одном PDF-документе.

  • Числа, дроби, модули
  • Формулы сокращенного умножения
  • Степени и корни
  • Квадратные уравнения
  • Прогрессии
  • Логарифмы
  • Тригонометрия
    • Основные соотношения
    • Перевод из радианной меры углов в градусную и обратно
    • Основные значения тригонометрических функций
    • Знаки тригонометрических функций
    • Формулы сложения
    • Формулы двойных углов
    • Формулы тройных углов
    • Формулы половинных углов
    • Формулы приведения
    • Формулы преобразования суммы и разности
    • Формулы преобразования произведения
    • Обратные тригонометрические функции
    • Простейшие тригонометрические уравнения
  • Основные элементарные функции
    • Таблица основных элементарных функций
    • Графики основных элементарных функций
  • Планиметрия
    • Треугольник
      • Основные величины и соотношения
      • Замечательные точки и линии в треугольнике
      • Формулы площади треугольника
      • Прямоугольный треугольник
      • Правильный треугольник
    • Четырехугольники
      • Квадрат
      • Прямоугольник
      • Параллелограмм
      • Ромб
      • Трапеция
    • Окружность и круг
  • Стереометрия
    • Куб
    • Параллелепипед
    • Пирамида
    • Усеченная пирамида
    • Цилиндр
    • Конус
    • Усеченный конус
    • Сфера и шар

Источник

Шпаргалки по математике, алгебре и геометрии

Шпаргалки по математике, алгебре и геометрии Шпаргалки по физике / Шпаргалки по химии

Шпаргалки по математике, алгебре и геометрии

Таблица квадратов. Таблица степеней. Формулы сокращенного умножения. Модуль числа. Свойства модуля: Уравнения и неравенства с модулем. Последовательности и прогрессии. Метод кординат на плоскости. Скалярное произведение векторов. Расстояние между точками. Тригонометрия — основные формулы. Таблица значений тригонометрических функций. Решение тригонометрических уравнений: Четность и нечетность тригонометрических функций. Обратные тригонометрические функции. Формулы приведения. Знаки тригонометрических функций. Показательные уравнения и неравенства.
Таблица квадратов. Таблица степеней. Формулы сокращенного умножения. Модуль числа. Свойства модуля. Уравнения и неравенства с модулем. Последовательности и прогрессии. Метод кординат на плоскости. Скалярное произведение векторов. Расстояние между точками. Тригонометрия - основные формулы. Таблица значений тригонометрических функций. Решение тригонометрических уравнений. Четность и нечетность тригонометрических функций. Обратные тригонометрические функции. Формулы приведения. Знаки тригонометрических функций. Показательные уравнения и неравенства.
Корень n-ой степени. Степени. Иррациональные уравнения и неравенства. Логарифм, свойства логарифмов Логарифмические уравнения и неравенства. Соотношения в правильных многоугольниках. Теория вероятностей. Теоремы сложения вероятностей. Логарифмические уравнения и неравенства. Производная. Правила дифференцирования. Производная сложной функции. Уравнение касательной к графику функции в точке.
Корень n-ой степени. Степени. Иррациональные уравнения и неравенства. Логарифм, свойства логарифмов. Логарифмические уравнения и неравенства. Соотношения в правильных многоугольниках. Теория вероятностей. Теоремы сложения вероятностей. Логарифмические уравнения и неравенства. Производная. Правила дифференцирования. Производная сложной функции. Уравнение касательной к графику функции в точке.
Тригонометрические формулы. Свойства функций, основные тождества, сумма углов. Сумма функций, формулы приведения, особые случаи, степени, половинные, двойные и тройные углы. Обратные функции.
Тригонометрические формулы. Свойства функций,фТригонометрические формулы. Свойства функций, основные тождества, сумма углов. Сумма функций, формулы приведения, особые случаи, степени, половинные, двойные и тройные углы. Обратные функции. основные тождества, сумма углов. Сумма функций, формулы приведения, особые случаи, степени, половинные, двойные и тройные углы. Обратыне функции.
Набор 2 — Алгебра. Линейная алгебра.
Свойства степеней. Формулы сокращенного умножения. Свойства арифметических корней. Модуль. Начала математического анализа: прогрессии арифметическая и геометрическая. Производная. Первообразная и интеграл. Среднее арифметическое и среднее геометрическое. Тригонометрия. Основные формулы. Арксинус, арккосинус, арктангенс, арккотангенс. Четность функций. Значения тригонометрических функций некоторых углов. Графики некоторых элементарных функций. Логарифмы. Решение квадратных, иррациональных, показательных, тригонометрических уравнений, уравнений с модулем Квадратные неравенства. Неравенства с модулем. Логарифмические неравенства. Неравенства с модулем. Иррациональные неравенства. Показательные неравенства. Комбинаторика и бином Ньютона.
Свойства степеней. Формулы сокращенного умножения. Свойства арифметических корней. Модуль. Начала математического анализа: прогрессии арифметическая и геометрическая. Производная. Первообразная и интеграл. Среднее арифметическое и среднее геометрическое. Тригонометрия. Основные формулы. Арксинус, арккосинус, арктангенс, арккотангенс. Четность функций. Значения тригонометрических функций некоторых углов. Графики некоторых элементарных функций. Логарифмы. Решение квадратных, иррациональных, показательных, тригонометрических уравнений, уравнений с модулем Квадратные неравенства. Неравенства с модулем. Логарифмические неравенства. Неравенства с модулем. Иррациональные неравенства. Показательные неравенства. Комбинаторика и бином Ньютона.
Определение комплексного числа. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Показательная форма комплексного числа. Действия с комплексными числами. Последовательности, пределы последовательности. Теоремы о пределах числовых последовательностей. Определение предела числовой функции. Односторонние пределы. Свойства пределов. Непрерывные функции и их свойства. Точки разрыва и их классификации. Замечательные пределы. Важные пределы. Теоремы о среднем. Правило Лопиталя. Линейные пространства. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Скалярное и векторное произведение векторов. Смешанное произведение векторов. Матрица перехода от базиса к базису. Преобразование координат вектора при переходе к новому базису. Евклидово пространство. Длина вектора. Угол между векторами. Линейные преобразования пространства. Матрица линейного преобразования. Связь между координатами образа и прообраза. Связь между координатами одного и того же линейного оператора в разных базисах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Характеристические уравнения линейного оператора. Собственные векторы линейного оператора и их свтойства. Поверхности второго порядка. Плоскость в пространстве. Виды углов в пространстве. Уравнения плоскости.
Определение комплексного числа. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Показательная форма комплексного числа. Действия с комплексными числами. Последовательности, пределы последовательности. Теоремы о пределах числовых последовательностей. Определение предела числовой функции. Односторонние пределы. Свойства пределов. Непрерывные функции и их свойства. Точки разрыва и их классификации. Замечательные пределы. Важные пределы. Теоремы о среднем. Правило Лопиталя. Линейные пространства. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Скалярное и векторное произведение векторов. Смешанное произведение векторов. Матрица перехода от базиса к базису. Преобразование координат вектора при переходе к новому базису. Евклидово пространство. Длина вектора. Угол между векторами. Линейные преобразования пространства. Матрица линейного преобразования. Связь между координатами образа и прообраза. Связь между координатами одного и того же линейного оператора в разных базисах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Характеристические уравнения линейного оператора. Собственные векторы линейного оператора и их свтойства. Поверхности второго порядка. Плоскость в пространстве. Виды углов в пространстве. Уравнения плоскости.
Делимость чисел. Кратное. Делитель. НОК. НОД Простые и составные числа. Взаимно простые числа. Числовые последовательности, члены, способы задания. Арифметическая и геометрическая прогрессии. Формулы. Характеристические свойства Числа. Множества натуральных, целых, рациональных, действительных, иррациональных чисел. Арифметические действия с дробями. Модуль — свойства. Решение квадратных уравнений. Формулы дискриминанта. Решение неполных квадратных уравнений. Теорема Виета. Алгоритм решения квадратного неравенства.
Делимость чисел. Кратное. Делитель. Наименьшее общее кратное (НОК). Наибольший общий делитель (НОД). Простые числа. Составные числа. Взаимно простые числа. Признаки делимости. Числовые последовательности, члены, способы задания. Арифметическая и геометрическая прогрессии. Формулы для разности и знаменателя, формулы n-ного члена. Формулы суммы n первых членов. Характеристические свойства Числа. Множества натуральных, целых, рациональных, действительных, иррациональных чисел. Арифметические действия с дробями. Модуль - свойства. Решение квадратных уравнений. Формулы дискриминанта. Решение неполных квадратных уравнений. Теорема Виета. Алгоритм решения квадратного неравенства.
Основные свойства функций. Понятие функции. Четность и нечетность. Периодичность. Нули функции. Промежутки знакопостоянства. Монотонность (возрастание, убывание). Асимптоты. Алгоритм описания фукнкции.

Преобразование графиков функций у= f(x) в y=-f(x); y=f(-x); y=-f(-x); y=f(x-a); y=f(x)+b; y=f(ax); y=kf(x); y=|f(x)|; y=f(|x|). Построение графика обратной функции

Степенные функции y=xn и y=x1/n, n∈Z. Свойства, графики. Квадратичная функция. Свойства степеней. Свойства арифметических корней. Формулы сокращенного умножения. Примеры значения степенных функций.

Неравенства, понятия, строгие, нестрогие, решение. Свойства неравенств. Решение линейных неравенств. Решение квадратных неравенств. Метод интервалов при решении неравенств.

Решение показательных неравенств. Решение логарифмическмх неравенств. Решение иррациональных неравенств. Решение неравенств с модулем. Часто применяемые неравенства

Интегрирование функций. Понятие и основное свойство первообразной. Неопределенный интеграл. Правила интегрирования. Определенный интеграл. Формула Ньютона-Лейбница. Свойства и геометрический смысл определенного интеграла. Физический смысл определенного интеграла

Уравнения прямой на плоскости. Общее уравнение прямой. Уравнение прямой «в отрезках». Уравнение прямой с угловым коэффициентом. Уравнение пучка прямых, проходящих через точку. Уравнение прямой, проходящей через 2 точки. Нормальное уранение прямой.

Консультации и техническая
поддержка сайта: Zavarka Team

Источник



Шпаргалки по математике для ЕГЭ и ОГЭ

Формулы, правила, свойства. Можно использовать для сдачи ЕГЭ и ОГЭ по математике.

Для начала шпаргалка в компактном виде:

шпаргалки по математике

Формулы сокращенного умножения

(а+b) 2 = a 2 + 2ab + b 2

(а-b) 2 = a 2 – 2ab + b 2

a 3 – b 3 = (a-b)( a 2 + ab + b 2 )

a 3 + b 3 = (a+b)( a 2 – ab + b 2 )

(a + b) 3 = a 3 + 3a 2 b+ 3ab 2 + b 3

(a – b) 3 = a 3 – 3a 2 b+ 3ab 2 — b 3

Свойства степеней

a m/n = (a≥0, n ε N, m ε N)

a — r = 1/ a r (a>0, r ε Q)

a m · a n = a m + n

a m : a n = a m – n (a≠0)

Первообразная

Если F’(x) = f(x), то F(x) – первообразная

x n = x n +1 /n+1 + C

a x = a x / ln a + C

cos x = sin x + C

1/ sin 2 x = – ctg x + C

1/ cos 2 x = tg x + C

sin x = – cos x + C

Геометрическая прогрессия

q – знаменатель прогрессии

b n = b1 · q n – 1 – n-ый член прогрессии

Модуль

-a, если a Формулы cos и sin

sin (x + π) = -sin x

cos (x + π) = -cos x

sin (x + 2πk) = sin x

cos (x + 2πk) = cos x

sin (x + π/2) = cos x

Объемы и поверхности тел

1. Призма, прямая или наклонная, параллелепипед V = S·h

2. Прямая призма SБОК = p·h, p – периметр или длина окружности

3. Параллелепипед прямоугольный

V = a·b·c; P = 2(a·b + b·c + c·a)

P – полная поверхность

4. Куб: V = a 3 ; P = 6 a 2

S = 1/3 S·h; S – площадь основания

6. Пирамида правильная S =1/2 p·A

A – апофема правильной пирамиды

7. Цилиндр круговой V = S·h = πr 2 h

8. Цилиндр круговой: SБОК = 2 πrh

9. Конус круговой: V=1/3 Sh = 1/3 πr 2 h

10. Конус круговой: SБОК = 1/2 pL= πrL

Тригонометрические уравнения

sin x = 1, x = π/2 + 2 πn

sin x = -1, x = – π/2 + 2 πn

cos x = 0, x = π/2 + 2 πn

cos x = 1, x = 2πn

cos x = -1, x = π + 2 πn

Теоремы сложения

cos (x +y) = cosx ·cosy – sinx ·siny

cos (x -y) = cosx ·cosy + sinx ·siny

sin (x +y) = sinx ·cosy + cosx ·siny

sin (x -y) = sinx ·cosy – cosx ·siny

tg (x ±y) = tg x ± tg y/ 1 — + tg x ·tg y

ctg (x ±y) = tg x — + tg y/ 1± tg x ·tg y

sin x ± sin y = 2 cos (x±y/2)· cos (x — +y/2)

cos x ± cosy = -2 sin (x±y/2)· sin (x — +y/2)

1 + cos 2x = 2 cos 2 x; cos 2 x = 1+cos2x/2

1 – cos 2x = 2 sin 2 x; sin 2 x = 1- cos2x/2

a,b – основания; h – высота, c – средняя линия S = (a+b/2)·h = c·h

а – сторона, d – диагональ S = a 2 = d 2 /2

a – сторона, d1, d2 – диагонали, α – угол между ними S = d1d2/2 = a 2 sinα

9. Правильный шестиугольник

a – сторона S = (3√3/2)a 2

S = (L/2) r = πr 2 = πd 2 /4

Правила дифференцирования

( f (x) + g (x) )’ = f ’(x) + g’(x)

(tg x)’ = 1/ cos 2 x

(ctg x)’ = – 1/ sin 2 x

(f (kx + m))’ = kf ’(kx + m)

Уравнение касательной к графику функции

Площадь S фигуры, ограниченной прямыми x = a , x = b

Формула Ньютона-Лебница

t π/4 π/2 3π/4 π
cos √2/2 -√2/2 1
sin √2/2 1 √2/2
t 5π/4 3π/2 7π/4
cos -√2/2 √2/2 1
sin -√2/2 -1 -√2/2
t π/6 π/4 π/3
tg √3/3 1 √3
ctg √3 1 √3/3

sin x = b x = (-1) n arcsin b + πn

cos x = b x = ± arcos b + 2 πn

tg x = b x = arctg b + πn

ctg x = b x = arcctg b + πn

Теорема синусов : a/sin α = b/sin β = c/sin γ = 2R

Теорема косинусов : с 2 =a 2 +b 2 -2ab cos y

Неопределенные интегралы

∫ x n dx = (x n +1 /n+1) + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ dx/sin 2 x = -ctg + C

∫ dx/cos 2 x = tg + C

∫ x r dx = x r+1 /r+1 + C

Логарифмы

Градус 30 45 60
sin 1/2 √2/2 √3/2
cos 1 √3/2 √2/2 1/2
tg √3/3 1 √3
t π/6 π/3 2π/3 5π/6
cos √3/2 1/2 -1/2 -√3/2
sin 1/2 √3/2 √3/2 1/2
90 120 135 150 180
1 √3/2 √2/2 1/2
-1/2 -√2/2 -√3/2 -1
-√3 -1 √3/3
t 7π/6 4π/3 5π/3 11π/6
cos -√3/2 -1/2 1/2 √3/2
sin -1/2 -√3/2 -√3/2 -1/2

Формулы двойного аргумента

cos 2x = cos 2 x – sin 2 x = 2 cos 2 x -1 = 1 – 2 sin 2 x = 1 – tg 2 x/1 + tg 2 x

sin 2x = 2 sin x · cos x = 2 tg x/ 1 + tg 2 x

tg 2x = 2 tg x/ 1 – tg 2 x

ctg 2x = ctg 2 x – 1/ 2 ctg x

sin 3x = 3 sin x – 4 sin 3 x

cos 3x = 4 cos 3 x – 3 cos x

tg 3x = 3 tg x – tg 3 x / 1 – 3 tg 2 x

sin s cos t = (sin (s+t) + sin (s+t))/2

sin s sin t = (cos (s-t) – cos (s+t))/2

cos s cos t = (cos (s+t) + cos (s-t))/2

Формулы дифференцирования

x’ = 1 (sin x)’ = cos x

(kx + m)’ = k (cos x)’ = – sin x

(1/x)’ = – (1/x 2 ) ( ln x)’ = 1/x

(e x )’ = e x ; (x n )’ = nx n-1 ;(log a x)’=1/x ln a

Площади плоских фигур

1. Прямоугольный треугольник

S = 1/2 a·b (a, b – катеты)

2. Равнобедренный треугольник

S = (a/2)·√ b 2 – a 2 /4

3. Равносторонний треугольник

S = (a 2 /4)·√3 (a – сторона)

4. Произвольный треугольник

a,b,c – стороны, a – основание, h – высота, A,B,C – углы, лежащие против сторон; p = (a+b+c)/2

S = 1/2 a·h = 1/2 a 2 b sin C =

a 2 sinB sinC/2 sin A= √p(p-a)(p-b)(p-c)

a,b – стороны, α – один из углов; h – высота S = a·h = a·b·sin α

cos (x + π/2) = -sin x

Формулы tg и ctg

tg x = sin x/ cos x; ctg x = cos x/sin x

ctg (x + πk) = ctg x

ctg (x ± π) = ± ctg x

tg (x + π/2) = – ctg x

ctg (x + π/2) = – tg x

sin 2 x + cos 2 x =1

1 + tg 2 x = 1/ cos 2 x

1 + ctg 2 x = 1/ sin 2 x

tg 2 (x/2) = 1 – cos x/ 1 + cos x

cos 2 (x/2) = 1 + cos x/ 2

sin 2 (x/2) = 1 – cos x/ 2

P = 4 πR 2 = πD 2

V = πh 2 (R-1/3h) = πh/6(h 2 + 3r 2 )

SБОК = 2 πRh = π(r 2 + h 2 ); P= π(2r 2 + h 2 )

V = 1/6 πh 3 + 1/2 π(r 2 + h 2 )· h;

14. Шаровой сектор:

V = 2/3 πR 2 h’ где h’ – высота сегмента, содержащего в секторе

Формула корней квадратного уравнения

ax 2 + bx + c = 0 (a≠0)

Если D=0, то x = -b/2a (D = b 2 -4ac)

Если D>0, то x1,2 = -b± /2a

Арифметическая прогрессия

a n+1 = a n + d, где n – натуральное число

d – разность прогрессии;

a n = a 1 + (n – 1)·d – формула n-го члена

Радиус описанной окружности около многоугольника

R = a/ 2 sin 180/n

Радиус вписанной окружности

L = 2 πR S = πR 2

Площадь конуса

Тангенс угла — отношение противолежащего катета к прилещащему. Котангенс – наоборот.

Скачать шпаргалки по математике

Скачать всё это в компактном виде: matematika-shpory.doc.

Рекомендуем:

Главная » Подготовка к ЕГЭ. Разные предметы » Шпаргалки по математике для ЕГЭ и ОГЭ

Источник

ЕГЭ по математике – формулы

Формулы по базовой математике для ЕГЭ

Разработчики КИМ считают, что для решения задач математики ЕГЭ базового уровня достаточно знания формул, представленных в справочных материалах – они выдаются на экзамене в индивидуальном комплекте вместе с КИМ. В «официальную шпаргалку», которой можно пользоваться во время проведения ЕГЭ, входят:

  • таблица квадратных чисел от 0 до 99;
  • свойства арифметического квадратного корня;
  • формулы сокращенного умножения;
  • корни квадратного уравнения;
  • свойства степени и логарифма;
  • теорема Пифагора;
  • формула расчета длины окружности и площади круга;
  • расчет средней линии треугольника и трапеции;
  • радиус вписанной и описанной окружности правильного треугольника;
  • формулы расчета площади планиметрических фигур;
  • вычисление поверхностей и объемов тел;
  • основные тригонометрические функции и тождества;
  • график линейной функции;
  • геометрический смысл производной.

Понять, нужны ли еще какие-то формулы для ЕГЭ по математике, поможет решение тренировочных тестов, например, содержащихся в открытом банке заданий на сайте ФИПИ. Для подстраховки можно изучить КЭС (кодификатор элементов содержания), актуальный в текущем учебном году. В нем перечислены все темы, которые выносятся на экзамен.

Основные формулы для профильного ЕГЭ

Выпускники, планирующие сдавать профиль, ставятся в более жесткие условия, чем те, кто выбрал базовый уровень. Учитывая то, что они видят перспективу своего дальнейшего обучения по направлениям, тесно или напрямую связанным с математикой, к их знаниям предъявляются повышенные требования. В частности, на официальные справочные материалы особенно рассчитывать не приходится. Все, что в них есть, это 5 тригонометрических тождеств.

Основные формулы

Естественно, чтобы сдать профильную математику, для ЕГЭ потребуется запомнить намного больше формул. Выяснить, на какие темы нужно обратить внимание, можно по тому же алгоритму, что и для базы (из КЭС или, решая тренировочные задания).

Основываясь на данных, опубликованных на сайте ФИПИ, с большой долей вероятности потребуется знание следующих формул для сдачи ЕГЭ по профильной математике:

  • правила сокращенного умножения;
  • арифметическая и геометрическая прогрессии;
  • основы вероятностной теории;
  • свойства степеней и логарифмов;
  • азы тригонометрии (формулы двойного угла, суммы и разности аргументов; алгоритм преобразования разности и суммы в произведение; обратные функции);
  • производная (правила дифференцирования, элементарнее функции и уравнение касательной);
  • первообразная;
  • двухмерная планиметрия;
  • правила нахождения площадей геометрических фигур;
  • трехмерная стереометрия.

Опытные учителя и репетиторы собрали все формулы по математике, которые приходилось использовать на ЕГЭ в последние три года:

Материалы для скачивания – в формате pdf.

Выученные назубок формулы к ЕГЭ по математике – это только часть пути к успешной сдаче, надо еще научиться правильно применять их. Хорошую практику даст решение сложных задач.

Источник

Читайте также:  Меры по профилактике сердечно сосудистой патологии