Следствия постулатов теории относительности.
Теория относительности является новым учением о пространстве и времени, которое пришло вместо старых классических представлений. Исходя из теории относительности, одновременность событий, расстояния и промежутки времени оказываются не абсолютными, а относительными и зависят от системы отсчета.
Причиной безостоятельности классических представлений о пространстве и времени оказывается неправильная гипотеза о вероятности мгновенной передавания взаимодействий и сигналов из одной точки пространства в другую. Существование предельной конечной скорости передачи взаимодействий требует наличия глубокого изменения привычных представлений о пространстве и времени, которые основаны на ежедневном опыте. Понятие абсолютного времени, текущего в раз и навсегда заданном темпе, абсолютно не зависит от материи и движения ее, является не верным.
Ключевыми следствиями, следующими из постулатов теории относительности, можно назвать такие:
Относительность расстояний, выражаемая при помощи формулы:
где l 0 — является длиной тела в системе отсчета К, относительно которой тело в покое; l — является длиной тела в системе K 1, относительно которой тело движется со скоростью
Как можно увидеть из формулы, l l 0. Отсюда, самой большую длину имеет тело в той системе отсчета, относительно которой оно находится в покое. Это и есть релятивистское сокращение размеров тела в движущихся системах отсчета.
Относительность промежутка времени можно выразить при помоши формулы:
где τ 0 — является интервалом времени между двумя событиями, которые происходят в одной и той же точке инерциальной системы координат K, τ — является интервалом времени между теми же событиями в системе отсчета K 1, которая движется относительно системы К со скоростью
Значит, что τ > τ 0.
Тогда, длительность события будет минимальной в неподвижной системе отсчета. Причем, чем большей будет относительная скорость движения 2-х систем, тем большей оказется разница в длительности событий, которые измеряются в этих системах. Из формул (1) и (2) также следует, что скорость света — является предельной скоростью тела при всяком движении, так как при v > с формулы теряют смысл.
Релятивистский закон сложения скоростей для частного случая движения тела, имеющего скорость v 1 вдоль оси ОХ 1 системы отсчета K 1, которая имеет скорость v относительно системы отсчета К, причем так, что координатные оси ОХ и ОХ 1 совпадают, а координатные оси OY и OY 1, OZ и OZ 1 остаются параллельными, принимает вид:
где v 2 — является скоростью движения тела относительно системы отсчета К.
Из этой формулы можно увидеть, что луч света, который распространяется со скоростью v 1 = с в движущейся системе координат, будет распространяться с такой же скоростью с и в неподвижной системе координат.
Источник
Физика. 11 класс
Конспект урока
Физика, 11 класс
Урок №20. Постулаты специальной теории относи-тельности (СТО)
Основные вопросы, рассматриваемые в теме: событие, постулат, собственная инерциальная система отсчёта, собственное время, собственная длина тела, масса покоя, инвариант; причины появления СТО; постулаты СТО: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна.
Специальная теория относительности (СТО) – физическая теория, рассматривающая пространственно-временные закономерности, справедливые для любых физических процессов.
Событие — физическое явление, которое происходит в определённый момент времени в данной точке пространства.
События могут происходить в одно и тоже время и их называют одновременными. Если координаты событий совпадают, то события называют одноместными.
Инерциальные системы отсчёта (ИСО) – это системы отсчёта, в которых выполняется первый закон Ньютона – закон инерции.
Два постулата теории:
1. Все физические явления протекают одинаково во всех инерциальных системах отсчёта.
2. Скорость света в вакууме одинакова во всех инерциальных системах отсчёта.
Постулат – это основное положение, которое не может быть логически доказано, а является результатом обобщения всех опытов.
Время, отсчитываемое покоящимися в ИСО часами, называется собственным временем.
Длину тела L, относительно которого оно в ИСО находится в покое называют собственной длиной.
Массой покоя m, называют массу тела в состоянии покоя относительно ИСО.
Скорость света c и собственное время Δτ инвариантны в любых ИСО.
Список основной и дополнительной литературы по теме:
- Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 229 – 238.
- Рымкевич А.П. Физика. Задачник. 10-11 классы. – М.: Дрофа, 2013. — С. 147 – 148
- Анциферов Л.И., Физика: электродинамика и квантовая физика. 11кл. Учебник для общеобразовательных учреждений – М.: Мнемозина, 2001. – С. 242-253.
- Айзексон У., Эйнштейн. Жизнь гения; пер. с анг. А.Ю. Каннуниковой. – М: АСТ, 2016 – С.16-25
Теоретический материал для самостоятельного изучения
Человек, открывший новый взгляд на пространство и время мыслил образами. Альберт Эйнштейн всегда твёрдо верил, что именно воображение способно проникнуть в суть, в глубину, в основу сущего. Он никогда не заучивал теорию, он представлял её образами. В детстве Эйнштейну привили интерес к математике, естествознанию. Одной из любимых книг Альберта была книга Аарона Бернштейна «Популярные книги по естественной истории». От описаний научных историй у 12 летнего Эйнштейна захватывало дух. Мысленные эксперименты были самым занимательным в книгах Бернштейна.
В 1895 году Эйнштейну повезло, в 16-летнем возрасте, провалив экзамены в Цюрихский политехникум по французскому языку, литературе, политике и зоологии, но легко справившись с математикой и естествознанием, он поступил в сельскую школу Арау. Образование здесь строилось на методах, разработанных Иоганном Песталоцци, на проведении мысленных экспериментов, на более глубоком понимании явлений и ситуаций. Это были первые шаги на пути формирования специальной теории относительности (СТО).
Теория относительности – физическая теория, рассматривающая пространственно-временные закономерности, справедливые для любых физических процессов.
В теории относительности часто будет использовано понятие «событие». Событием будем называть физическое явление, которое происходит в определённый момент времени в данной точке пространства.
В движущемся поезде, вывешенная в центре, вспыхивает лампочка в точке О – это одно событие. Свет от лампочки достигает точку А в одном конце помещения – это другое событие, а также достигает противоположного конца помещения в точке В – то третье событие.
События могут происходить в одно и тоже время и их называют одновременными. Если координаты событий совпадают, то события называют одноместными. При этом учитываем, что реальные тела имеют размеры и события разворачиваются во времени.
Одновременно ли достигнет свет две противолежащие точки А и В? Ведь корабль движется со скоростью в одном направлении и одна стенка приближается к летящему свету, а другая отдаляется.
Классический закон сложения скоростей не работает в описании распространения электромагнитного излучения от источника света.
Чтобы ответить на эти вопросы, необходимо выяснить, меняются ли основные законы электродинамики при переходе одной инерциальной системы отсчёта к другой, или же подобно принципам относительности Галилея и законам Ньютона, они остаются неизменными.
Принцип относительности Галилея.
Инерциальные системы отсчёта (ИСО) – это системы отсчёта, в которых выполняется первый закон Ньютона – закон инерции. Системы, которые ускоряются или вращаются называют неинерциальными. Система отсчёта, движущаяся равномерно и прямолинейна относительно ИСО, также инерциальная. Земля не совсем инерциальная система отсчёта, так как она вращается, но для большинства наших примеров, будем считать её инерциальной.
К началу XX века в физике накопилось много наблюдений и опытов, которые не могли быть объяснены классическими теориями. В XVII – XIX веках большое место в теории отводилось гипотезе о существовании эфира. Эфир представляли себе, как занимающая всё пространство упругая среда, с помощью которой осуществляется взаимодействие между телами, благодаря которой распространяются волны звуковые, световые, электромагнитные. Считалось естественным связывать абсолютную систему отсчёта с мировым эфиром. Этой теории придерживался и основатель электронной теории Х. Лоренц и Г.Герц. Однако эксперименты, поставленные в 1881 году учёными А. Майкельсоном, Э.Морли и А.Физо об изотропности света, приводили к противоположным результатам. В опытах по изучению распространения света, А.Физо с помощью оптических приборов находил подтверждение, существования эфира. Опыты Майкельсона существование «эфирного ветра», то есть преимущественной системы отсчёта или «светового эфира» не подтверждали, за что подверглись критике со стороны прославленного учёного Х.Лоренца.
Но противоречия в опытах классическими законами уже невозможно было объяснить. Эйнштейн, изменяя классические законы механики, а не законы электродинамики Максвелла, предложил наиболее революционный способ описания явлений в пространстве и времени. Из теории Максвелла следовало, что электромагнитные волны, в отличие от механических волн, могут распространяться в вакууме и подчиняются законам электромагнетизма, что свет – это электромагнитная волна и скорость света:
У Максвелла не было оговорок по поводу относительности скорости света.
И в 1905 году появилась работа А. Эйнштейна «К электродинамике движущихся сред», в которой излагались идеи новой теории – специальной теории относительности.
В основу теории были положены два постулата * :
- Все физические явления протекают одинаково во всех инерциальных системах отсчёта, или никакими опытами, проводимыми в инерциальной системе отсчёта, невозможно установить её движение относительно других инерциальных систем.
- Скорость света в вакууме одинакова во всех инерциальных системах отсчёта. Она не зависит от ни от скорости источника света, ни от скорости светового приёмника сигнала.
Постулат – это основное положение, которое не может быть логически доказано, а является результатом обобщения всех опытов. В физической теории выполняет ту же роль, что и аксиома в математике.
Скорость света занимает особое положение в этой теории, распространение света в вакууме является максимально возможной скоростью передачи взаимодействий в природе.
С точки зрения классической физики первый и второй постулаты входят в противоречия друг с другом. По первому постулату законы механики (как частный случай законов физики) справедливы во всех ИСО. Следовательно, справедлив и закон сложения скоростей. Однако второй постулат противоречит классическому закону сложения скоростей. Значит, в СТО нельзя пользоваться преобразованиями Галилея. Заменив преобразования Галилея на преобразования Лоренца, Эйнштейн устранил кажущееся противоречие между постулатами, что позволило объяснить многие опыты по электродинамике и оптике.
Независимость скорости света от источника много раз проверялись на опытах. Советские учёные А.М. Бонч-Бруевич и В.А. Молчанов в 1955 году проводили опыты, измеряя скорости света от правого и левого краёв Солнца (один из которых из-за осевого вращения Солнца приближается к нам со скоростью 2,3 км/с, а другой с такой же скоростью удаляется). Учёные, проведя расчёты, пришли к выводу, что скорости распространения света с обоих концов одинаковы.
Преобразования Лоренца, которые использовал Эйнштейн, заменив преобразования Галилея, для описания распространения света в системе координат:
Если скорость намного меньше скорости света , то отношение квадратичной скорости движения системы к квадрату скорости света намного меньше 1
и величиной
можно пренебречь. Тогда мы переходи к преобразованиям Галилея:
Новая теория раскрыла более глубокую физическую реальность и включает старую как предельный (частный) случай, который называют принципом соответствия.
Иначе это можно объяснить так: классическая механика (механика Ньютона) является частным случаем более общей механики, описывающих процессы в разных инерциальных системах отсчёта с учётом преобразований Лоренца.
Мы ещё неоднократно убедимся, что при малых скоростях, намного меньших, чем скорость света законы СТО переходят в законы классической механики.
Существование предельной конечной скорости изменяет наши привычные представления о пространстве и времени. Представление об абсолютном времени, которое течёт с навсегда заданным темпом, оказывается неверным.
Следствия постулатов относительности:
- Относительность одновременности
Рассмотрим простой метод синхронизации часов. Допустим, что космонавт хочет узнать, одинаково ли идут часы в разных концах корабля в точках А и В. С помощью источника света в центре корабля производят вспышку света, если часы идут синхронно, по показания на часах будут одинаковы при приёме света. Но так будет только в движущейся системе отсчёта К1, связанной с кораблём. И так же, как и в первом случае, вспышка для наблюдателя, находящегося в системе отсчёта К (неподвижная система), часы будут удалятся от вспышки света, и излучению нужно пройти большее расстояние, значит и время должно зафиксироваться отличное от часов в точке В. Вывод наблюдателя в системе отсчёта К: сигналы достигают часов не одновременно.
Время, отсчитываемое покоящимися в ИСО часами, называется собственным временем и обозначают буквой τ (тау). Промежуток времени между событиями по часам наблюдателя, находящегося внутри объекта (ИСО К1). Промежуток времени между теми же событиями по часам наблюдателя относительно которой удаляется обозначим Δt. Между этими промежутками существует соотношение:
Это означает, что часы, движущиеся относительно ИСО идут медленнее, неподвижных часов и показывают меньший промежуток времени между событиями (замедление времени).
Преобразовав выражение Δt, получим:
А так как скорость света c постоянна и собственное время Δτ неизменно для данного события, то есть инвариантны, то получим:
Наряду с протонами и нейтронами в природе существуют мюоны – элементарные частицы. Мюоны могут образовываться в атмосфере Земли. Но мюоны не стабильны и довольно быстро распадаются, превращаясь в другие элементарные частицы. В лаборатории, где мюоны практически покоятся, среднее время их жизни Δτ =2·10 -6 с. Вычисляя скорость и другие параметры мюонов, физики обнаружили, что мюоны в атмосфере Земли (без распада) могут пройти расстояние 6 км за время Δt =2·10 -5 с. Это означает, что время жизни движущегося мюона в системе «Земля» в 10 раз больше собственного времени жизни Δτ.
Рассмотрим ещё один парадокс: относительность расстояний или размеров тела. Допустим, что в космическом корабле измеряют длину стержня, расположенного вдоль направления скорости. Длину стержня внутри корабля, относительно которого он находится в покое обозначим L и назовём собственной длиной. При этом расчёты показывают, что линейный размер тела, движущегося относительно ИСО уменьшается в направлении движения.
Закон сложения скоростей в СТО записывается так:
𝟅 – скорость тела, относительно неподвижной системы отсчёта,
𝟅 ´ — скорость относительно подвижной системы отсчёта,
v – скорость подвижной системы отсчёта относительно неподвижной,
c – скорость света.
При скоростях движения намного меньших, чем скорость света закон сложения скоростей переходит в классический, а длина тела и интервал времени становятся одинаковыми в неподвижной и движущейся системах отсчёта.
Даже масса, такое непоколебимое в нашем представлении значение, меняет свои параметры в движущейся системе относительно неподвижной ИСО. Собственную массу тела, находящегося в состоянии покоя, относительно ИСО, называют m массой покоя.
Сам А. Эйнштейн говорил о том, что правильнее было бы называть его теорию относительности теорией абсолютности, так как в основе её заложена идея абсолютности во всех инерциальных системах отсчёта.
Примеры и разбор заданий
1. Две частицы удаляются друг от друга, имея скорость 0,6с каждая, относительно земного наблюдателя. Относительная скорость частиц составляет ______скорости света.
Дано: 𝟅 ´ = 0,6 с, v = — 0,6 с.
Для решения задачи, необходимо перейти в ИСО, связанную с одной из частиц. Пусть частицы движутся вдоль одной прямой, в противоположные стороны. Используем закон сложения скоростей СТО:
𝟅 – скорость частицы, относительно неподвижной системы отсчёта,
𝟅 ´ — скорость частицы относительно подвижной системы отсчёта,
v – скорость подвижной системы отсчёта относительно неподвижной,
c – скорость света.
Примем скорость v = — 0,6с одной частицы за положительное значение, скорость 𝟅 ´ = 0,6с. Тогда формула примет вид:
Ответ значения скорости частицы будет корректен относительно скорости света, а не в м/с или км/с.
Ответ: 0,882 с.
1. Масса протона, летящего со скоростью 1,3·10 8 м/с, составляет_____ а.е.м. Массу покоя протона считать равной 1 а.е.м.
В атомной и ядерной физике для выражения массы пользуются специальной внесистемной единицей – атомной единицей массы (а.е.м.), равной 1/12 массы атома углерода.
1 а.е.м. = 1,66057·10 -27 кг.
Подставим числовые значения в формулу определения массы частицы, движущейся относительно неподвижной ИСО:
Источник
Теория относительности
Был этот мир глубокой тьмой окутан.
Да будет свет! И вот явился Ньютон.
Эпиграмма XVIII в.
Но сатана недолго ждал реванша.
Пришел Эйнштейн — и стало все, как раньше.
Эпиграмма XX в.
Постулаты теории относительности
Постулат (аксиома) — фундаментальное утверждение, лежащее в основе теории и принимаемое без доказательств.
Первый постулат: все законы физики, описывающие любые физические явления, должны во всех инерциальных системах отсчета иметь одинаковый вид.
Этот же постулат можно сформулировать иначе: в любых инерциальных системах отсчета все физические явления при одинаковых начальных условиях протекают одинаково.
Второй постулат: во всех инерциальных системах отсчета скорость света в вакууме одинакова и не зависит от скорости движения как источника, так и приемника света. Эта скорость является предельной скоростью всех процессов и движений, сопровождаемых переносом энергии.
Закон взаимосвязи массы и энергии
Релятивистская механика — раздел механики, изучающий законы движения тел со скоростями, близкими к скорости света.
Любое тело, благодаря факту своего существования, обладает энергией, которая пропорциональна массе покоя.
Что такое теория относительности (видео)
Следствия теории относительности
Относительность одновременности. Одновременность двух событий относительна. Если события, происшедшие в разных точках, одновременны в одной инерциальной системе отсчета, то они могут быть не одновременными в других инерциальных системах отсчета.
Сокращение длины. Длина тела, измеренная в системе отсчета K’, в которой оно покоится, больше длины в системе отсчета K, относительно которой K’ движется со скоростью v вдоль оси Ох:
Замедление времени. Промежуток времени, измеренный часами, неподвижными в инерциальной системе отсчета K’, меньше промежутка времени, измеренного в инерциальной системе отсчета K, относительно которой K’ движется со скоростью v:
Теория относительности
материал из книги Стивена Хокинга и Леонарда Млодинова «Кратчайшая история времени»
Относительность
Фундаментальный постулат Эйнштейна, именуемый принципом относительности, гласит, что все законы физики должны быть одинаковыми для всех свободно движущихся наблюдателей независимо от их скорости. Если скорость света постоянная величина, то любой свободно движущийся наблюдатель должен фиксировать одно и то же значение независимо от скорости, с которой он приближается к источнику света или удаляется от него.
Требование, чтобы все наблюдатели сошлись в оценке скорости света, вынуждает изменить концепцию времени. Согласно теории относительности наблюдатель, едущий на поезде, и тот, что стоит на платформе, разойдутся в оценке расстояния, пройденного светом. А поскольку скорость есть расстояние, деленное на время, единственный способ для наблюдателей прийти к согласию относительно скорости света – это разойтись также и в оценке времени. Другими словами, теория относительности положила конец идее абсолютного времени! Оказалось, что каждый наблюдатель должен иметь свою собственную меру времени и что идентичные часы у разных наблюдателей не обязательно будут показывать одно и то же время.
Говоря, что пространство имеет три измерения, мы подразумеваем, что положение точки в нем можно передать с помощью трех чисел – координат. Если мы введем в наше описание время, то получим четырехмерное пространство-время.
Другое известное следствие теории относительности – эквивалентность массы и энергии, выраженная знаменитым уравнением Эйнштейна Е = mс2 (где Е– энергия, m – масса тела, с – скорость света). Ввиду эквивалентности энергии и массы кинетическая энергия, которой материальный объект обладает в силу своего движения, увеличивает его массу. Иными словами, объект становится труднее разгонять.
Этот эффект существенен только для тел, которые перемещаются со скоростью, близкой к скорости света. Например, при скорости, равной 10% от скорости света, масса тела будет всего на 0,5% больше, чем в состоянии покоя, а вот при скорости, составляющей 90% от скорости света, масса уже более чем вдвое превысит нормальную. По мере приближения к скорости света масса тела увеличивается все быстрее, так что для его ускорения требуется все больше энергии. Согласно теории относительности объект никогда не сможет достичь скорости света, поскольку в данном случае его масса стала бы бесконечной, а в силу эквивалентности массы и энергии для этого потребовалась бы бесконечная энергия. Вот почему теория относительности навсегда обрекает любое обычное тело двигаться со скоростью, меньшей скорости света. Только свет или другие волны, не имеющие собственной массы, способны двигаться со скоростью света.
Искривленное пространство
Общая теория относительности Эйнштейна основана на революционном предположении, что гравитация не обычная сила, а следствие того, что пространство-время не является плоским, как принято было думать раньше. В общей теории относительности пространство-время изогнуто или искривлено помещенными в него массой и энергией. Тела, подобные Земле, движутся по искривленным орбитам не под действием силы, именуемой гравитацией.
Так как геодезическая линия – кратчайшая линия между двумя аэропортами, штурманы ведут самолеты именно по таким маршрутам. Например, вы могли бы, следуя показаниям компаса, пролететь 5966 километров от Нью-Йорка до Мадрида почти строго на восток вдоль географической параллели. Но вам придется покрыть всего 5802 километра, если вы полетите по большому кругу, сперва на северо-восток, а затем постепенно поворачивая к востоку и далее к юго-востоку. Вид этих двух маршрутов на карте, где земная поверхность искажена (представлена плоской), обманчив. Двигаясь «прямо» на восток от одной точки к другой по поверхности земного шара, вы в действительности перемещаетесь не по прямой линии, точнее сказать, не по самой короткой, геодезической линии.
Если траекторию космического корабля, который движется в космосе по прямой линии, спроецировать на двумерную поверхность Земли, окажется, что она искривлена.
Согласно общей теории относительности гравитационные поля должны искривлять свет. Например, теория предсказывает, что вблизи Солнца лучи света должны слегка изгибаться в его сторону под воздействием массы светила. Значит, свет далекой звезды, случись ему пройти рядом с Солнцем, отклонится на небольшой угол, из-за чего наблюдатель на Земле увидит звезду не совсем там, где она в действительности располагается.
Напомним, что согласно основному постулату специальной теории относительности все физические законы одинаковы для всех свободно двигающихся наблюдателей, независимо от их скорости. Грубо говоря, принцип эквивалентности распространяет это правило и на тех наблюдателей, которые движутся не свободно, а под действием гравитационного поля.
В достаточно малых областях пространства невозможно судить о том, пребываете ли вы в состоянии покоя в гравитационном поле или движетесь с постоянным ускорением в пустом пространстве.
Представьте себе, что вы находитесь в лифте посреди пустого пространства. Нет никакой гравитации, никакого «верха» и «низа». Вы плывете свободно. Затем лифт начинает двигаться с постоянным ускорением. Вы внезапно ощущаете вес. То есть вас прижимает к одной из стенок лифта, которая теперь воспринимается как пол. Если вы возьмете яблоко и отпустите его, оно упадет на пол. Фактически теперь, когда вы движетесь с ускорением, внутри лифта все будет происходить в точности так же, как если бы подъемник вообще не двигался, а покоился бы в однородном гравитационном поле. Эйнштейн понял, что, подобно тому как, находясь в вагоне поезда, вы не можете сказать, стоит он или равномерно движется, так и, пребывая внутри лифта, вы не в состоянии определить, перемещается ли он с постоянным ускорением или находится в однородном гравитационном поле. Результатом этого понимания стал принцип эквивалентности.
Принцип эквивалентности и приведенный пример его проявления будут справедливы лишь в том случае, если инертная масса (входящая во второй закон Ньютона, который определяет, какое ускорение придает телу приложенная к нему сила) и гравитационная масса (входящая в закон тяготения Ньютона, который определяет величину гравитационного притяжения) суть одно и то же.
Использование Эйнштейном эквивалентности инертной и гравитационной масс для вывода принципа эквивалентности и, в конечном счете, всей общей теории относительности – это беспрецедентный в истории человеческой мысли пример упорного и последовательного развития логических заключений.
Замедление времени
Еще одно предсказание общей теории относительности состоит в том, что около массивных тел, таких как Земля, должен замедляться ход времени.
Теперь, познакомившись с принципом эквивалентности, мы можем проследить ход рассуждений Эйнштейна, выполнив другой мысленный эксперимент, который показывает, почему гравитация воздействует на время. Представьте себе ракету, летящую в космосе. Для удобства будем считать, что ее корпус настолько велик, что свету требуется целая секунда, чтобы пройти вдоль него сверху донизу. И наконец, предположим, что в ракете находятся два наблюдателя: один – наверху, у потолка, другой – внизу, на полу, и оба они снабжены одинаковыми часами, ведущими отсчет секунд.
Допустим, что верхний наблюдатель, дождавшись отсчета своих часов, немедленно посылает нижнему световой сигнал. При следующем отсчете он шлет второй сигнал. По нашим условиям понадобится одна секунда, чтобы каждый сигнал достиг нижнего наблюдателя. Поскольку верхний наблюдатель посылает два световых сигнала с интервалом в одну секунду, то и нижний наблюдатель зарегистрирует их с таким же интервалом.
Что изменится, если в этом эксперименте, вместо того чтобы свободно плыть в космосе, ракета будет стоять на Земле, испытывая действие гравитации? Согласно теории Ньютона гравитация никак не повлияет на положение дел: если наблюдатель наверху передаст сигналы с промежутком в секунду, то наблюдатель внизу получит их через тот же интервал. Но принцип эквивалентности предсказывает иное развитие событий. Какое именно, мы сможем понять, если в соответствии с принципом эквивалентности мысленно заменим действие гравитации постоянным ускорением. Это один из примеров того, как Эйнштейн использовал принцип эквивалентности при создании своей новой теории гравитации.
Итак, предположим, что наша ракета ускоряется. (Будем считать, что она ускоряется медленно, так что ее скорость не приближается к скорости света.) Поскольку корпус ракеты движется вверх, первому сигналу понадобится пройти меньшее расстояние, чем прежде (до начала ускорения), и он прибудет к нижнему наблюдателю раньше чем через секунду. Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше, так что интервал между двумя сигналами остался бы равным одной секунде. Но в момент отправки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.
В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле. Следовательно, да-же если ракета не ускоряется, а, например, стоит на стартовом столе на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам). Вот это действительно удивительно!
Гравитация изменяет течение времени. Подобно тому как специальная теория относительности говорит нам, что время идет по-разному для наблюдателей, движущихся друг относительно друга, общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Согласно общей теории относительности нижний наблюдатель регистрирует более короткий интервал между сигналами, потому что у поверхности Земли время течет медленнее, поскольку здесь сильнее гравитация. Чем сильнее гравитационное поле, тем больше этот эффект.
Наши биологические часы также реагируют на изменения хода времени. Если один из близнецов живет на вершине горы, а другой – у моря, первый будет стареть быстрее второго. В данном случае различие в возрастах будет ничтожным, но оно существенно увеличится, коль скоро один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой. Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле. Этот случай известен как парадокс близнецов, но парадоксом он является только для тех, кто держится за идею абсолютного времени. В теории относительности нет никакого уникального абсолютного времени – для каждого индивидуума имеется своя собственная мера времени, которая зависит от того, где он находится и как движется.
C появлением сверхточных навигационных систем, получающих сигналы от спутников, разность хода часов на различных высотах приобрела практическое значение. Если бы аппаратура игнорировала предсказания общей теории относительности, ошибка в определении местоположения могла бы достигать нескольких километров!
Появление общей теории относительности в корне изменило ситуацию. Пространство и время обрели статус динамических сущностей. Когда перемещаются тела или действуют силы, они вызывают искривление пространства и времени, а структура пространства-времени, в свою очередь, сказывается на движении тел и действии сил. Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят.
Время возле черной дыры
Представим себе бесстрашного астронавта, который остается на поверхности коллапсирующей звезды во время катастрофического сжатия. В некоторый момент по его часам, скажем в 11:00, звезда сожмется до критического радиуса, за которым гравитационное поле усиливается настолько, что из него невозможно вырваться. Теперь предположим, что по инструкции астронавт должен каждую секунду по своим часам посылать сигнал космическому кораблю, который находится на орбите на некотором фиксированном расстоянии от центра звезды. Он начинает передавать сигналы в 10:59:58, то есть за две секунды до 11:00. Что зарегистрирует экипаж на борту космического судна?
Ранее, проделав мысленный эксперимент с передачей световых сигналов внутри ракеты, мы убедились, что гравитация замедляет время и чем она сильнее, тем значительнее эффект. Астронавт на поверхности звезды находится в более сильном гравитационном поле, чем его коллеги на орбите, поэтому одна секунда по его часам продлится дольше секунды по часам корабля. Поскольку астронавт вместе с поверхностью движется к центру звезды, действующее на него поле становится все сильнее и сильнее, так что интервалы между его сигналами, принятыми на борту космического корабля, постоянно удлиняются. Это растяжение времени будет очень незначительным до 10:59:59, так что для астронавтов на орбите интервал между сигналами, переданными в 10:59:58 и в 10:59:59, очень ненамного превысит секунду. Но сигнала, отправленного в 11:00, на корабле уже не дождутся.
Все, что произойдет на поверхности звезды между 10:59:59 и 11:00 по часам астронавта, растянется по часам космического корабля на бесконечный период времени. С приближением к 11:00 интервалы между прибытием на орбиту последовательных гребней и впадин испущенных звездой световых волн станут все длиннее; то же случится и с промежутками времени между сигналами астронавта. Поскольку частота излучения определяется числом гребней (или впадин), приходящих за секунду, на космическом корабле будет регистрироваться все более и более низкая частота излучения звезды. Свет звезды станет все больше краснеть и одновременно меркнуть. В конце концов звезда настолько потускнеет, что сделается невидимой для наблюдателей на космическом корабле; все, что останется, – черная дыра в пространстве. Однако действие тяготения звезды на космический корабль сохранится, и он продолжит обращение по орбите.
Источник
Постулаты специальной теории относительности Эйнштейна кратко 11 класс
Содержание
- Предпосылки разработки СТО
- Первый постулат СТО
- Второй постулат СТО
- Следствия из постулатов СТО
- Что мы узнали?
Постулаты специальной теории относительности Эйнштейна
Одним из величайших открытий начала XX в. стала разработка А. Эйнштейном специальной теории относительности (СТО). Эта теория базируется на допущениях-постулатах, принимаемых без доказательства. Поговорим кратко о постулатах специальной теории относительности Эйнштейна.
Предпосылки разработки СТО
К середине XIX в. механика Ньютона была многократно подтверждена и считалась истинной и полностью исчерпывающей теорией, описывающей движение тел.
Первые сомнения появились с разработкой электродинамики Дж. Максвеллом. Из уравнений электродинамики следовало, что электромагнитные волны должны распространяться с одной и той же скоростью, независимо от скорости их источника. Это противоречило ньютоновским представлениям о сложении скоростей.
Противоречие можно было разрешить, если предположить, что электромагнитные волны распространяются в особой покоящейся среде — в эфире. Эфир, таким образом, оказывался привилегированной системой отсчета, которую можно было бы использовать как «единую» для всех остальных систем. Для остальных систем отсчета принцип относительности для электродинамики не действует.
Однако опыт Майкельсона показал с высокой точностью, что обнаружить скорость Земли по отношению к эфиру невозможно. Откуда следовало, что никакого эфира нет, и нет никакой «единой» системы отсчета.
Рис. 1. Опыт Майкельсона.
Оставалось предположить, что электромагнитное излучение распространяется с одинаковой скоростью, независимо от того, движется ли источник, а наши представления о пространстве требуют пересмотра.
Первый постулат СТО
А. Эйнштейн предположил, что опыт Майкельсона не выявил движения Земли относительно эфира потому, что это движение не оказывает влияния на оптические явления. Иначе говоря, все инерциальные системы отсчета одинаковы, и все процессы в них (в том числе и электромагнитные) проходят одинаково. Это и есть первый постулат специальной теории относительности. Он распространяет ньютонов механический принцип относительности на все процессы в природе.
Второй постулат СТО
Для объяснения следствий из уравнений электродинамики Максвелла был принят второй постулат специальной теории относительности: скорость света в вакууме для всех инерциальных систем отсчета одинакова. Этот постулат позволяет устранить противоречия между принципом сложения скоростей и уравнениями Максвелла.
Источник