Меню

Строение цитоплазмы органеллы таблица



Эукариотическая клетка строение, свойства и функции (Таблица)

Эукариоты или ядерные, — это надцарство живых организмов, клетки в которых содержится ядро. Все организмы, кроме прокариот (бактерий и архей), являются ядерными. Вирусы и вироиды не относятся ни к прокариотам, ни эукариотам.

Эукариотические клетки в основном намного крупнее прокариотических, разница в объёме достигает тысяч раз. Клетки эукариот включают около десятка видов различных структур — органеллы, из которых многие отделены от цитоплазмы одной или несколькими мембранами. Ядро — часть клетки, окружённая у эукариот двойной мембраной (двумя элементарными мембранами) и содержащая генетический материал: молекулы ДНК, «упакованные» в хромосомы. Ядро обычно одно, но бывают и многоядерные клетки.

Строение эукариотической клетки схема

Таблица строение эукариотической клетки и функции

Строение и свойства эукариотической клетки

Органоиды, характерные для животной и растительной клеток

Тонкая пленка 7-10мк, состоящая из двойного слоя фосфолипидов, с включением белков. Гидрофобные (отталкивающие воду) молекулы липидов погружены в толщу мембраны, а гидрофильные — обращены наружу в окружающую водную среду. К некоторым белкам на поверхности клеток прикреплены углеводы; такие белки называют гликопротеинами, они являются рецепторами. Снаружи углеводный слой — гликока-ликс. Белки, гликопротеины и липиды, находящиеся на поверхности разных клеток, очень специфичны и являются указателями типа клеток. С их помощью клетки «узнают» друг друга <например, сперматозоид «узнает» яйцеклетку). Сходное строение имеют внутриклеточные мембраны

— Изолируетклетку от окружающей среды.

— Обеспечивает обмен веществ и энергии между клеткой и внешней средой, движение клеток и сцепление их друг с другом.

— Соединяет клетки в ткани.

— Клеточная мембрана обладает избирательной проницаемостью, регулирует поступление веществ в клетку, водный баланс, выведение продуктов обмена.

— Участвует в фагоцитозе и пиноцитозе.

— Большинство мембранных белков служат катализаторами химических реакций, осуществляют транспорт веществ или являются рецепторами

Цитоплазма — коллоидный раствор различных солей и органических веществ — цитозоль. Вода составляет 60-90 % всей массы цитоплазмы. Белки — 10-20 %, а иногда до 70 % сухой массы. Система белковых нитей, пронизывающая цитоплазму называется цитоскелетом. Кроме белков в состав цитоплазмы могут входить липиды 23 %, различные органические 1,5 % и неорганические соединения 1,5 %. Цитоплазма находится в постоянном движении

— Жидкая среда клетки для химических реакций.

— Участвует в передвижении веществ.

— Поддерживает тургор клетки.

— Механическая функция, за счет цитоскелета

Ядро — важнейший органоид эукариотической клетки, в прокариотической клетке отсутствует

Окружено двухслойной пористой мембраной, образующей комплекс с остальными мембранами клетки. Содержит хроматин — комплекс ДНК и белка, образует хромосомы в момент деления клетки. Ядрышко — состоит из белка и РНК, может быть несколько. Ядерный сок — кариолимфа — коллоидный раствор органических и неорганических веществ

— Хранение наследственной информации в хромосомах.

— Регуляция синтеза белка и процессов происходящих в клетке.

— Синтез РНК (иРНК, тРНК, рРНК), а также сборка рибосом.

— Руководит процессами самовоспроизведения и процессами развития организма

Эндоплазматическая сеть (ретикулум)

Шероховатый (гранулярный) ретикулум — представляет собой систему мембран, образующих канальцы, цистерны, трубочки, несущую рибосомы. Строение мембран сходно с наружной мембраной и образуете ней единую сеть

— Синтез белка на рибосомах.

— Транспорт веществ по цистернам и трубочкам.

— Деление клетки на отдельные секции — компартменты

Гладкий ретикулум — имеет такое же строение, как и шероховатый, но не несет рибосом

— Участвует в синтезе липидов, белок не синтезируется.

— Остальные функции, сходные с шероховатым ретикулум

Мельчайшие органоиды клетки диаметром около 20нм. Рибосомы состоят из двух неравных субъединиц (частиц): большой и малой. В состав рибосомы входят рибосомальная РНК и белки. Синтезируются в ядрышке. Объединяются вдоль иРНК в цепочки, образуя полисому

Биосинтез первичной структуры белка по принципу матричного синтеза

Представляет собой окруженный одинарной мембраной пузырек диаметром 0,2-0,8мкм, имеет овальную форму. Содержит набор пищеварительных ферментов, синтезированных на рибосомах. Образуется в комплексеГольджи. Прочная мембрана лизосом препятствует проникновению ферментов в цитоплазму. Входит в состав единой мембранной системы клетки

— Пищеварительная — обеспечивает переваривание органических веществ, попавших в клетку при фагоцитозе и линоцитозе

— При голодании лизосомы могут участвовать в растворении органоидов, клеток и частей организма (утрата хвоста у головастика) — автолизе

Двухмембранные органоиды. Наружная мембрана гладкая, а внутренняя образует многочисленные складки и выросты -кристы. Внутри митохондрия заполнена бесструктурным матриксом. В матриксе содержатся молекулы ДНК, РНК, рибосомы. Митохондрии имеют разнообразную форму: округлые, овальные, цилиндрические и палочковидные тельца

— Энергетический и дыхательный центр клеток.

— Освобождение энергии в процессе дыхания.

— «Запасание» энергии в виде молекул АТФ. Источником энергии являются органические вещества, окисляющиеся под действием ферментов до СO2 и Н2O

Клеточный центр — характерен для клеток животных и низших растении

Органоид немембранного строения, состоящий из двух центриолей — цилиндрической формы, расположенных перпендикулярно друг другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована из 9пар микротрубочек.

Участвуют в делении клеток животных и низших растений, образуя веретено деления

Аппарат (комплекс) Гольджи

Система уплощенных цистерн (трубочек, полостей), ограниченных двойными мембранами, образующих по краям пузырьки (диктиосомы). В растительных клетках цистерны способны расширяться и превращаться в крупные вакуоли. Входит в единую мембранную систему клетки

— Участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки.

— Вещества упаковываются в пузырьки.

— В растениях — участвуют в построении клеточной стенки.

Микротрубочки — длинные тонкие полые цилиндры, диаметром 25нм. Стенки микротрубочек состоят из белков

— Опорная — образуют внутренний каркас, помогающий клеткам сохранять форму.

— Двигательная — входят в состав ресничек и жгутиков

Микронити — тонкие структуры, состоящие из тысяч молекул белка, соединенных друг с другом

— Образуют опорно-двигательную систему, называемую цитоскелетом.

— Способствуют току цитоплазмы в клетках

Реснички — многочисленные цитоплазматические выросты на поверхности мембраны — образованы микротрубочками, покрытыми мембраной

Обеспечивают передвижение некоторых одноклеточных организмов и ток жидкости в организмах, удаление частичек пыли (дыхательный реснитчатый эпителий)

Жгутики — единичные выросты на поверхности клетки. Реснички и жгутики имеют общую основную структуру: девять пар микротрубочек, расположенных кольцом, две одиночные микротрубочки в центре и базальное тельце в основании

Служат для движения одноклеточным организмам, сперматозоидам,зооспорам

Непостоянные структуры цитоплазмы. Плотные включения в виде гранул

Содержат запасные питательные вещества (крахмал, жиры, белки, сахар)

Органоиды, характерные только для растительных клеток

Содержимое пластид называют стромой. Наружная мембрана гладкая, внутренняя образует пластинчатые апячивания — тилакоиды. Большая часть их укладывается в виде стопки монет и образует граны.

В мембранах гран находится хлорофилл, придающий зеленую окраску и обеспечивающий протекание световой фазы светосинтеза

Округлые, бесцветные органоиды, внутренняя мембрана образует 2-3 выроста. На свету преобразовываются в хлоропласты

Служат местом отложения запасных питательных веществ, чаще всего крахмала

Двухмембранные шарообразные органоиды, шаровидной формы. Содержат пигменты — каротиноиды, окраска желтая, красная, оранжевая

Придают лепесткам цветков, плодам и прицветным листьям окраску, привлекают насекомых-опылителей

Клеточная оболочка (стенка)

Состоит из целлюлозы, имеет поры. Имеется в клетках грибов, состоит из хитина

Защищает клетку от внешних воздействий, придает прочность, является скелетом растения

Вакуоль, характерна только для растительных клеток

Мембранная полость, заполненная клеточным соком. Вакуоль является производной эндоплазматической сети. Клеточный сок является водным раствором органических веществ: органических кислот, сахара, солей, белков, дубильных веществ, алкалоидов, пигментов и так далее.

— регуляция водно-солевого обмена;

— поддержание тургорного давления;

— накопление продуктов обмена веществ и запасных веществ;

— выведение из обмена токсичных веществ

_______________

Источник информации:

1. Биология в таблицах и схемах / Спб. — 2004.

2. Биология: Справочник для старшеклассников и поступающих в вузы/ Т.Л.Богданова —М.: 2012.

Источник

Клеточные структуры

По строению и организации клетки — очень сложные образования (рис. 1). В них обнаружены различные микроскопические и субмикроскопическне структуры, обладающие высокой динамичностью и способностью закономерно изменяться соответственно изменениям условий существования организма и приспосабливаться к ним.

Наиболее важные компоненты клетки (животной и растительной)— ядро и цитоплазма, которые тесно связаны между собой и не могут существовать раздельно, однако строение и функции их неодинаковы. Ядро возникло на определенном этапе эволюционного развития клетки.

Ядро — главный органоид клетки. Оно покрыто тонкой двухслойной мембраной с порами для соединения с цитоплазмой. Ядро обычно имеет шарообразную форму (рис. 2), но в некоторых случаях — палочкообразную, лопастную и даже сетчатую. В ядре хорошо видна еще меньшая по размеру структура — ядрышко, где накапливается и, по-видимому, синтезируется РНК, которая затем переносится в цитоплазму и становится основной структурной единицей рибосом, В ядрах содержится большое количество ферментов, обусловливающих освобождение и трансформацию энергии и осуществление многочисленных синтезов. Таким образом, энергетически ядра представляют собой полностью независимые органоиды клетки. Состав их ферментов обеспечивает образование аденозинтрифосфорной кислоты (АТФ) в процессе гликолиза и свидетельствует о высокой метаболической активности.

Читайте также:  Соккер турнирная таблица апл

Химическими компонентами ядра являются в основном: белки и нуклеиновые кислоты. Химический состав изолированных ядер, выделенных из проростков гороха (по А. Фрей-Висслингу и К. Мюлеталеру), % (по массе): ДНК—14, РНК—12,1, основные белки — 22,6, другие белки — 51,4.

Основные (щелочные) белки — это протамины и гистоны, которые содержат много основных аминокислот: лизина, гистидина и особенно аргинина. Протамины и гистоны образуют с нуклеиновыми кислотами нуклеопротеиды. Другие белки могут содержаться в ядре в виде самостоятельной фазы. Ядрышко состоит из больших гранул, которые по размеру близки к рибосомам (диаметр их 15 нм) и содержат большое количество РНК. Основное вещество ядра называется нуклео-плазмой, В ядре находятся хромосомы — носители наследственности, Хромосомы имеют хроматиновые структуры, основными компонентами которых являются ДНК и РНК.

Цитоплазма — рабочий аппарат клетки. Она пронизана системой мембран, которые отходят от ядерной оболочки и соединяются с внешней мембраной клетки. Эти внутренние клеточные мембраны, образующие густо переплетенную сеть с многочисленными канальцами и полостями, называют эндоплазматической сетью. Функциональное значение ее разнообразно, Она участвует в синтезе ассимилятов. Мембраны эндоплазматической сети пронизывают и объединяют в единое целое клетку, а также служат своеобразными путями перемещения ассимилятов и передачи раздражения от клетки к клетке, которая осуществляется последовательной перезарядкой поверхности мембран. Химически клеточные мембраны гетерогенны и состоят из протеидов (80%, из них 25% приходится на белки-ферменты) и липидов (20%), среди которых много фосфолипидов.

Структурные элементы клетки можно разделить на три большие функциональные группы:
1) органеллы, которые катализируют превращение энергии, — митохондрии и хлоропласта;
2) органеллы, которые катализируют репликацию белков, — рибосомы, полирибосомы;
3) клеточные гранулы и другие образования, которые принимают участие в синтетических реакциях, обмене веществ (сферосомы, цитосомы, элайопласты, транслосомы, осмиофильные гранулы, аппарат Гольджи и т. д.).

Электронно-микроскопическими исследованиями установлено, что растительная клетка состоит из большого количества мембранных систем. Многие из субклеточных компонентов имеют мембранное строение.

В процессе эволюции хондриом (совокупность митохондрий клетки) образовался, по-видимому, позже, чем пластом (совокупность пластид — лейкопласты, хлоропласта и хромопласты). Возможно, что митохондрии отделились в филогенезе от системы пластид. Митохондриальный аппарат — необходимый компонент всех клеток, которым присущ аэробный способ жизни, тогда как хлоропласты являются обязательным ингредиентом только клеток автотрофных растений.

Хлоропласты и митохондрии — это «силовые станции», от которых зависит жизнедеятельность клетки и растения в целом, так как одна из них накапливает солнечную энергию в макроэргических связях АТФ, а вторая превращает энергию, содержащуюся в питательных веществах, также в энергию АТФ.

Митохондрии (от греч. mitos — нить, chondros — зернышко) — органеллы шарообразной формы, диаметром 0,5 мкм и длиной 2 мкм. Это нестойкие структуры, в липофильных жидкостях они разрушаются, а в воде набухают, имеют двойную оболочку, состоящую из внутренней и внешней мембран. Между мембранами имеется просвет (10 нм), заполненный сывороткой. Внутренняя мембрана митохондрий образует кристы, или трубочки. К ней со стороны стромы присоединены с помощью «стебельков», или ножек, частицы, которые получили название — оксисом, так как они содержат окислительные ферменты. Внутреннее пространство митохондрий заполнено матриксом, или хондриоплазмой, — вязким раствором, содержащим ферменты (рис. 3, 4).

Митохондрии состоят из белка (2/3) и липидов (1/3), среди которых половина приходится на фосфолипиды. Неотъемлемыми компонентами митохондрий являются ДНК и все типы РНК. Находящаяся в матриксе митохондрий ДНК в виде нитей способна к независимой от ДНК ядра репликации. В митохондриях обнаружены специфические рибосомы, которые обеспечивают автономный синтез некоторых белков. Так, митохондрии проростков гороха содержат, %: белка — 30-40, РНК — 0,5-1, фосфолипидов — 30. В митохондриях сосредоточены ферменты цикла трикарбоновых кислот, флавопротеиды и цитохромы.

Митохондрии — дыхательные центры клетки, обладают следующими функциями: 1) осуществляют окислительные реакции, являющиеся источником электронов; 2) переносят электроны по цепи компонентов, синтезирующих АТФ; 3) катализируют синтетические реакции, идущие с использованием энергии АТФ; 4) регулируют биохимические процессы в цитоплазме.

При анаэробном дыхании митохондрии исчезают и эндоплазматическая сеть становится более развитой. В клетке в зависимости от ее типа и функции содержится 50—5000 митохондрий.

Пластиды образуются из пропластид — маленьких амебообразных телец (диаметром 0,05—0,5 мкм), которые формируются из инициальных частиц, отделяющихся от ядра, и содержат нуклеоплазму. Пластом состоит из пластид трех типов: лейкопластов (бесцветные), хлоропластов (зеленые) и хромопластов (оранжевые); их размеры в среднем составляют 2×5 мкм. Пластиды по монотропному типу развития проходят несколько стадий, а именно (по А. Фрей-Висслингу и К. Мюлеталеру);

1) ювенильная (рост) инициальные частицы
протопластиды
2) активная (метаболизм) лейкопласты
хлоропласты
3) дегенерация, старение
(пассивное состояние)
хромопласты

Пластиды имеют двойную мембрану, внутри которой находится гранулярное вещество, называемое стромой. В начале развития строма пластид имеет гранулярное строение.

Структура хлоропласта формируется в несколько этапов. Первичная дифференциация пластиды начинается с инвагинаций внутренней мембраны до образования проламеллярного тела (без света). Второй этап связан с образованием ламеллярно-гранулярного строения, биосинтезом и накоплением хлорофилла. В хлоропластах высших растений образуются граны, которые состоят из серии ламелл, или двойных мембран (рис. 5). Каждая двойная мембрана образует закрытый мешочек, или сумку, которая называется тилакоидом. Ламеллы состоят из белков и липидов. Химический анализ ламелл, выделенных из хлоропластов шпината, показал, что в них 52% приходится на белок и 48% на липидную фракцию, которая включает хлорофилл а и b, каротиноиды (ксантофиллы к каротины), пластохинон, витамин К1 фосфолипиды (галактозил-глицериды, фосфоглицериды), сульфолипиды.

Хлоропласты имеют определенную биохимическую и генетическую автономность. В них синтезируется ДНК, которая отличается от ядерной ДНК. Хлоропластам свойственны также своя белоксинтезирующая система (рибосомы) и автономность процесса биосинтеза белка. Увеличение размеров пластид коррелирует с накоплением белка. Хлоропласт можно представить как уменьшенную и упрощенную модель клетки, которая реагирует на .действие света включением и выключением своих генов. Основная функция хлоропластов — участие в процессе фотосинтеза. Функция лейкопластов — участие во вторичном синтезе крахмала в клетках. Хромопласты, как правило, образуются из хлоропластов, а иногда, например в корнеплоде моркови, из лейкопластов. При этом строма дегенерирует, ламеллярная структура разрушается, оболочка сохраняется и образуются глобулы, которые содержат капельки желтого цвета с каротиноидами.

Рибосомы — это рибонуклеопротендные частицы сферической формы, диаметром 15—35 нм. В них содержится приблизительно одинаковое количество структурного белка и высокополимерной РНК. Комплексы из пяти и более рибосом называются полирибосомами, или полисомами. Каждая рибосома состоит из двух субъединиц с различными коэффициентами седиментации, которые агрегатируются в единое целое с помощью ионов магния. Слипаясь по две, они образуют димеры. Рибосомы очень пористые и отличаются высокой степенью гидратации. Они выполняют чрезвычайно важные функции в обмене веществ—это центры биосинтеза белка в клетке. Роль рибосом в белковом синтезе заключается в том, что они обусловливают процесс, при котором активированные аминокислоты конденсируются, образуя полипептидную цепь.

Рибосомы имеются в клетках всех организмов. Они локализуются в цитоплазме и органеллах (ядре, митохондриях, пластидах). В хлоропластах рибосомы находятся в свободном и связанном с их структурой состояниях. Последние более интенсивно включают 14 С аминокислот в белки и являются полирибосомами. В дифференцированных клетках большинство рибосом, как правило, связаны с липопротеидными мембранами, которые, пронизывают цитоплазму и образуют эндоплазматическую сеть. Такая эндоплазматическая сеть с прикрепленными к ней рибосомами называется эндоплазматическим ретикулумом.

Сферосомы — субмикроскопические компактные частицы цитоплазмы диаметром 0,4—0,8 мкм, содержат белковую строму и цитохромоксидазу, ферментативно активны, богаты жирами. Сферосомы, по-видимому, осуществляют биосинтез жиров, а именно последний его этап — переэтерификацию глицерофосфата путем обмена между фосфорной кислотой и жирными кислотами. Таким образом, сферосомы можно считать специализированными органеллами, функция которых — биосинтез жиров.

Лизосомы по структуре и химическому составу близки к сферосомам, но богаче ферментами — в них обнаружены ферменты нуклеазы, фосфатазы, протеазы и т.д. Вполне вероятно, что лизосомы переваривают макромолекулярные продукты, поглощенные путем пиноцитоза. Они участвуют и в автолизе клетки.

Цитосомы — мелкие гранулы, которые находятся в тесном контакте с мембранами эндоплазматической сети, чем и отличаются от свободнолежащих сферосом и лизосом.

Транслосомы — толстостенные гранулы, функция которых, по-видимому, заключается в накоплении продуктов метаболизма фенольных производных и их транспортировке в вакуоль.

Так называемые диктиосомы, или аппарат Гольджи, могут состоять из отдельных пластинок, палочек и чешуек, разбросанных по всей цитоплазме клетки. Возможно, что аппарат Гольджи принимает участие в управлении общим ходом физиологических процессов, в, образовании вакуолей и клеточных оболочек.

Таким образом, высокая активность органелл клетки связана с особенностями их строения и химическим составом. Пластиды, митохондрии, микросомы содержат основную массу биокатализаторов (ферментов, витаминов и т.д.) и большое количество (25—30%) липонуклеопротеидов (табл. 2).

Каждая группа органелл выполняет свои функции на основании непрерывного взаимодействия с другими физиологически активными центрами клеток. Это видно на примере фотосинтеза и дыхания.

Клеточная оболочка состоит из клетчатки, или целлюлозы (C6H10O5)n, — полисахарида, который гидролизуется до глюкозы. Клетчатка является главным веществом хлорофиллоносных растений и по абсолютному количеству занимает первое место среди всех органических веществ на земной поверхности. Ниже приведен химический состав первичных растительных клеточных оболочек (колеоптилей, стеблей, листьев, корневых волосков), % на сухое вещество:

гемицеллюлоза 53
целлюлоза 30
пектиновые вещества 5
белки 5
липиды 7

Клеточная оболочка начинает развиваться с образования клеточной пластинки в анафазе митоза. Это происходит сразу после деления ядра. Целлюлоза в виде микрофибрилл формирует каркас. Микрофибриллы — эластичный строительный элемент клеточной оболочки (стенки), диаметр их 10—30 нм, длина несколько микрометров.

Отдельная микрофибрилла состоит из нескольких сотен молекул целлюлозы. Микрофибриллы, располагаясь параллельно своей оси, удерживаются вместе водородными связями и у высших растений цементируются гемицеллюлозой. Характерная особенность микрофибрилл целлюлозы — анизотропия набухания в воде, т.е. не во всех направлениях их поперечного сечения микрофибриллы увеличиваются одинаково. Важнейшая функция клеточной оболочки заключается в физическом противодействии осмотическому давлению со стороны внутреннего содержимого клетки. Это давление является движущей силой увеличения размеров и изменения формы клеток.

Клетчатка составляет более 50% древесины, а в волокне хлопчатника — более 90%. Структурная формула молекулы целлюлозы имеет такой вид:

Молекула клетчатки в среднем содержит 1`400—10`000 глюкозных остатков, расположенных в виде цепочки и соединенных между собой кислородным мостиком. Количество остатков глюкозы в молекуле целлюлозы в зависимости от растительного материала и способа его обработки изменяется в широких пределах (табл. 3). Соответственно изменяется молекулярная масса, или степень полимеризации. В длинных волокнообразных клетках, например в волосках семян хлопчатника или в лубяных волокнах льна, конопли, цепочки целлюлозы вытянуты в одном направлении, по длине клеток, но под некоторым углом к продольной оси. Таким образом, клеточная стенка имеет несколько спиральное строение.

Таблица №3
Молекулярная масса целлюлозы

Растительный материал Молекулярная масса Количество остатков глюкозы в молекуле
Хлопчатник 1`750`000 10`800
Лен 5`900`000 36`000
Рами 20`000 12`400
Древесина 400`000—500`000 2`500-3`100

Между мицеллами целлюлозы остаются межмицеллярные пространства, сквозь которые может легко проходить вода как в середину клетки, так и в окружающую среду. По бокам цепи целлюлозы связаны друг с другом дополнительными валентностями. Последние в несколько раз слабее, чем связи основных валентностей, поэтому волокнообразные клетки сравнительно легко расщепляются в продольном направлении, тогда как в поперечном направлении они достаточно прочные (не уступают в этом отношении металлической проволоке).

В паренхимных клетках цепочковидные молекулы целлюлозы состоят из мицелл, которые перекрещиваются в различных направлениях и образуют волокнообразную структуру или сложную неправильную сетку. Пространства такой сетки заполнены водой и межмицеллярными веществами. В клетках молодых эмбриональных тканей таким межмицеллярным веществом является пектин, а в клетках древесины — лигнин.

Клеточные оболочки способны к набуханию. Около нитевидных молекул целлюлозы вода размещается в продольных щелях, и оболочка набухает главным образом в поперечном направлении и очень слабо в продольном. Иная картина в паренхимных клетках, где наблюдается переплетение мицелл в виде войлока. В этом случае клетки паренхимы, набухая, увеличиваются в объеме во всех направлениях.

Вакуоль. Основная функция вакуоли — поддержание гомеостаза клетки. В клеточном соке вакуоли в растворенном состоянии содержатся соли, сахаристые вещества, белки, аминокислоты, органические кислоты, липиды, а также пигменты, которые относятся главным образом к группе флавоноидов. Так, пигменты антоцианы придают лепесткам цветков и другим частям растения красную, фиолетовую, синюю окраску. Красная окраска корней столовой свеклы обусловливается присутствием в клеточном соке бетанина — гликозида β-цианина (азотсодержащего аналога антоцианина).

Исследования выделенных вакуолей (Калифорнийский университет США) показали, например, что вакуоли из эндосперма прорастающих семян клещевины содержат до 25% всего количества белка в клетке, 62% сахарозы и различные гидролитические ферменты: кислую протеазу, карбопептидазу, фосфодиэстеразу, β-галактозидазу и др.

Получены интересные данные об образовании вакуолей. В клетках сухих семян вакуоли отсутствуют, но в них содержатся белковые тела — отложения запасных белков. При прорастании семян наружный слой белковых тел растворяется в воде и образуются капельки, содержащие их остатки. Затем капельки сливаются, образуя большую центральную вакуоль. Известны также данные о протеолитической функции вакуолей.

Следовательно, опровергается представление о вакуоли как о вместилище конечных продуктов обмена, отходов клетки, не имеющих влияния на биохимические процессы, происходящие в цитоплазме, и вакуоль рассматривается как органелла, обладающая аутофаговой активностью, участвующая в обмене веществ клетки.

Источник

Строение цитоплазмы органеллы таблица

Клетка — основная функциональная единица организма. Ядро клетки служит хранилищем огромного объёма генетической информации и одновременно центром её активной экспрессии. Существует большое количество различных типов клеток (клетки эпителия, печени, нервных волокон и др.), особенности метаболизма которых обусловлены находящимися в их цитоплазме органеллами, а также множеством растворимых ферментов, характерных для каждого вида клеток.

Цитоплазматическая мембрана, или плазмолемма, — барьер для растворимых в воде молекул, который отделяет внутреннее содержимое клетки от внешней среды. Она состоит из двух параллельных рядов фосфолипидов, которые образуют гидрофобную липидную прослойку между двумя гидрофильными слоями из фосфатных групп.

Плазмолемма пронизана различными белками, гидрофобные части которых находятся внутри билипидного слоя, а гидрофильные — на внешней и внутренней поверхности мембра ны. Микроворсинки — удлинения на верхней (апикальной) части плазмолеммы, которые увеличивают поверхность мембраны и облегчают обмен молекулами.

Ядро клетки. Генетическая информация заключена в хромосомах, которые находятся в ядерном матриксе. Матрикс — сетчатый внутриядерный каркас, состоящий из белкового материала и тесно примыкающий к ядерной оболочке.
Ядрышком называют морфологически выраженную структуру внутри ядра, в которой происходит синтез рибосомальной РНК (рРНК). В ядре клеток человека обычно присутствует одно ядрышко, в котором во время интерфазы возникают ядрышковые организаторы акроцентрических хромосом.

Ядро окружено двойной мембраной, называемой ядерной оболочкой, которая пронизана ядерными порами.

строение клетки

Цитоплазма клетки. Цитоплазма состоит из гелеобразного цитозоля, содержащего запасы гликогена, липидные вкрапления и свободные рибосомы, который пронизан рядами взаимосоединённых волокон и трубочек, образующих цитоскелет. Основные структурные компоненты цитоскелета — микротрубочки, микрофиламенты и промежуточные филаменты.

Микротрубочки — прямые полые цилиндры, стенки которых состоят из чередующихся молекул а- и b-тубулина. Они исходят из клеточного центра (центросомы), который имеет пару центриолей— цилиндрических структур, образованных девятью триплетами микротрубочек. Подобное строение свойственно также базальным тельцам реснитчатого эпителия.
Сеть микротрубочек играет важную роль в поддержании структуры и размера клетки, а также при расхождении хромосом во время деления и движения ресничек и сперматозоидов.

Микрофиламенты представляют собой двуспиральные полимеры белка актина и находятся в основном по периметру клетки. Они участвуют в движении клетки и изменении её формы.
Промежуточные филаменты имеют трубчатую структуру и соединяют десмосомы. В зависимости от вида клетки в их состав входит один или несколько из пяти определённых белков.

Митохондрии — самые крупные и наиболее распространённые в цитоплазме органеллы, основной функцией которых служит обеспечение организма энергией посредством синтеза АТФ. Митохондрии — самовоспроизводящиеся полуавтономные органеллы, содержащие рибосомы и до десяти и более копий кольцевых нитей митохондриальной ДНК.

Данная ДНК кодирует митохондриальные гены. В митохондриях присутствуют ферменты, необходимые для функционирования цикла трикарбоновых кислот, а также большое количество ферментов, участвующих в окислении жирных кислот.

Пероксисомы частично отвечают за детоксикацию различных веществ (в том числе этанола), однако их основная задача — окисление жирных кислот.

Эндоплазматическая сеть (ЭПС) — основной центр синтеза белков и липидов, который также служит начальным этапом секреторного пути белков. ЭПС представляет собой обширный лабиринт из связанных с мембраной каналов, который соединяется непосредственно с ядерной оболочкой.

Вблизи ядра на поверхности ЭПС есть рибосомы (гранулярная ЭПС), в то время как на участках, расположенных дальше, рибосомы отсутствуют (агранулярная или гладкая ЭПС). ЭПС играет важную роль в нейтрализации токсинов. Белки, синтезируемые в ней, затем попадают в комплекс Гольджи — ряд расположенных друг над другом сплюснутых везикул. После этого белки депонируются или попадают в секреторные везикулы для осуществления экзоцитоза, т.е. выведения из клетки в ответ на внешнее воздействие.

Эндоцитоз. Эндоцитозом называют процесс поглощения и переработки клеткой компонентов окружающей среды. При опосредованном рецепторами пиноцитозе происходит захват мелких частиц путём образования везикулы с жидкостью на поверхности цитоплазматической мембраны и её последующего поглощения клеткой. При этом образуются окаймлённые впячивания. Более крупные частицы связываются с мембраной и поглощаются в составе фагоцитарных вакуолей (фаголизосом); растворы поглощаются при помощи жидкостного пиноцитоза.

Содержимое пиноцитарных и фагоцитарных везикул, которые часто называют эндосомами, обычно обрабатывают лизосомы, содержащие разрушающие ферменты — лизоцимы.

Читайте также:  Как создать индекс для таблицы значений

Межклеточные соединения. В случае плотного соединения образуется непроницаемая перемычка между внешней (апикальной) и базолатеральной поверхностями эпителиальных клеток. При липких соединениях клетки связаны с помощью опоясывающих (длинные волокна) и точечных (расположены непосредственно в месте скрепления) десмосом. Гемидесмосомы (полудесмо-сомы) соединяют эпителиальные клетки через базальные мембраны (производные экстрацеллюлярного матрикса).

Щелевые соединения (нексусы) возникают в комплексах соединённых клеток. При этом через поры (щели) возможно сообщение между соседними клетками.
Недостаточность функций лизоцимов — причина некоторых наследственных заболеваний, таких, как, например, болезни Тея—Сакса (ранняя детская амавротическая идиотия), Фабри (наследственный дистопический липоидоз) и Гоше (наследственный глюкоцереброзидоз). В результате нарушения процесса поглощения клеткой липопротеинов возникает наследственная гиперхолестеринемия. При синдроме Цельвегера, для которого характерны деформации лица, снижение мышечного тонуса, увеличение печени и кисты почек, отсутствуют пероксисомы.

Причина болезни Шарко—Мари—Тута, сцепленной с Х-хромосомой, — дефект белка, участвующего в щелевом соединении клеток.
Большинство лекарственных препаратов вступают во взаимодействие с рецепторами цитоплазматической мембраны. Различные противоопухолевые препараты, такие, как винкристин или винбластин, повреждают систему микротрубочек, в то время как колхицин, применяемый для исследования хромосом, угнетает клетки во время метафа-зы митоза. Клофибрат снижает продукцию дополнительных пероксисом, его используют для снижения уровня липопротеинов в сыворотке крови.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Строение и функции цитоплазмы. Ключевые органеллы цитоплазмы

Цитоплазму называют внутренней средой организма, потому что она постоянно перемещается и приводит в движение все клеточные компоненты. В цитоплазме постоянно идут обменные процессы, содержатся все органические и не органические вещества.

Строение

Цитоплазма состоит из постоянной жидкой части – гиалоплазмы и элементов, которые меняются – органелл и включений.

Строение и функции цитоплазмы

Органеллы цитоплазмы делятся на мембранные и немембранные, последние в свою очередь могут быть двухмембранные и одномембранные.

  1. Немембранные органеллы: рибосомы, вакуоли, центросома, жгутики.
  2. Двухмембранные органеллы: митохондрии, пластиды, ядро.
  3. Одномембранные органеллы: аппарат Гольджи, лизосомы, вакуоли эндоплазматический ретикулум.

Также к компонентам цитоплазмы относятся клеточные включения, представлены в виде липидных капель или гранул гликогена.

Основные признаки цитоплазмы:

  • Бесцветная;
  • эластичная;
  • слизисто-вязкая;
  • структурированная;
  • подвижная.

Жидкая часть цитоплазмы по своему химическому составу отличается в клетках разной специализации. Основное вещество – вода от 70% до 90%, также в состав входят протеины, углеводы, фосфолипиды, микроэлементы, соли.

Кислотно-щелочное равновесие поддерживается на уровне 7,1–8,5pH (слабощелочное).

Цитоплазма, при изучении на большом увеличении микроскопа, не является однородной средой. Различают две части – одна находится на периферии в области плазмолеммы (эктоплазма), другая – возле ядра (эндоплазма).

Эктоплазма служит связующим звеном с окружающей средой, межклеточной жидкостью и соседними клетками. Эндоплазма – это место расположения всех органелл.

В структуре цитоплазмы выделяют особые элементы – микротрубочки и микрофиламенты.

Микротрубочки – немембранные органоиды, необходимые для перемещения органелл внутри клетки и образования цитоскелета. Глобулярный белок тубулин – основное строительное вещество для микротрубочек. Одна молекула тубулина в диаметре не превышает 5нм. При этом молекулы способны объединятся друг с другом, вместе образуя цепочку. 13 таких цепочек формируют микротрубочку диаметром 25нм.

Молекулы тубулина находятся в постоянном движении для формирования микротрубочек, если на клетку воздействуют неблагоприятные факторы, процесс нарушается. Микротрубочки укорачиваются или вовсе денатурируются. Эти элементы цитоплазмы очень важны в жизни растительных и бактериальных клеток, так как принимают участие в строении их оболочек.

Микротрубочки и микрофиламенты

Микротрубочки и микрофиламенты

Микрофиламенты – это субмикроскопические немембранные органеллы, которые образуют цитоскелет. Также входят в состав сократительного аппарата клетки. Микрофиламенты состоят из двух видов белка – актина и миозина. Актиновые волокна тонкие до 5нм в диаметре, а миозиновые толстые – до 25нм. Микрофиламенты в основном сосредоточены в эктоплазме. Существуют также специфические филаменты, которые характерны для конкретного вида клеток.

Микротрубочки и микрофиламенты вместе образуют цитоскелет клетки, который обеспечивает взаимосвязь всех органелл и внутриклеточный метаболизм.

В цитоплазме также выделяют высокомолекулярные биополимеры. Они объединяются в мембранные комплексы, которые пронизывают все внутреннее пространство клетки, предопределяют месторасположение органелл, отграничивают цитоплазму от клеточной стенки.

Особенности строения цитоплазмы заключаются в способности изменять свою внутреннюю среду. Она может пребывать в двух состояниях: полужидком (золь) и вязком (гель). Так, в зависимости от влияния внешних факторов (температура, радиация, химические растворы), цитоплазма переходит из одного состояния в другое.

Функции

  • Наполняет внутриклеточное пространство;
  • связывает между собой все структурные элементы клетки;
  • транспортирует синтезированные вещества между органоидами и за пределы клетки;
  • устанавливает месторасположение органелл;
  • является средой для физико-химических реакций;
  • отвечает за клеточный тургор, постоянство внутренней среды клетки.

Функции цитоплазмы в клетке зависят также от вида самой клетки: растительная она, животная, эукариотическая или прокариотическая. Но во всех живых клетках в цитоплазме происходит важное физиологическое явление – гликолиз. Процесс окисления глюкозы, который осуществляется в аэробных условиях и заканчивается высвобождением энергии.

Движение цитоплазмы

Цитоплазма находится в постоянном движении, эта характеристика имеет огромное значение в жизни клетки. Благодаря движению возможны метаболические процессы внутри клетки и распределение синтезированных элементов между органеллами.

Биологи наблюдали движение цитоплазмы в больших клетках, при этом следя за перемещением вакуоль. За движение цитоплазмы отвечают микрофиламенты и микротрубочки, которые приводятся в действие при наличии молекул АТФ.

Движение цитоплазмы показывает, насколько активны клетки и способны к выживанию. Этот процесс зависим от внешних воздействий, поэтому малейшие изменения окружающих факторов приостанавливают или ускоряют его.

Роль цитоплазмы в биосинтезе белка. Биосинтез белка осуществляется при участии рибосом, они же непосредственно находятся в цитоплазме или на гранулярной ЭПС. Также через ядерные поры в цитоплазму поступает иРНК, которая несет информацию, скопированную с ДНК. В экзоплазме содержатся необходимые аминокислоты для синтеза белка и ферменты, катализирующие эти реакции.

Сводная таблица строения и функций цитоплазмы

Структурные элементы Строение Функции
Эктоплазма Плотный слой цитоплазмы Обеспечивает связь с внешней средой
Эндоплазма Более жидкий слой цитоплазмы Место расположения органоидов клетки
Микротрубочки Построены из глобулярного белка — тубулина с диаметром 5нм, который способен полимеризироваться Отвечают за внутриклеточный транспорт
Микрофиламенты Состоят из актиновых и миозиновых волокон Образуют цитоскелет, поддерживают связь между всеми органеллами

Источник

Органоиды клетки. Строение и функции.

Органоиды клетки и их наличие зависит от типа клетки. Современная биология делит все клетки (или живые организмы) на два типа: прокариоты и эукариоты. Прокариоты – это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома – молекула ДНК (иногда РНК).

Эукариотические клетки имеют ядро, в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды. К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).

Строение ограноидов эукариотов.

Цитоплазма

Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.

Рибосомы

Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.

Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.

Митохондрии

Органоиды, имеющие самую разнообразную форму – от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.

Эндоплазматическая сеть (ЭПС)

Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.

Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:

Лейкопласты

Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.

Являются дополнительным резервуаром для хранения питательных веществ.

Хлоропласты

Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.

Преобразуют органические вещества из неорганических, используя энергию солнца.

Хромопласты

Органоиды, от желтого до бурого цвета, в которых накапливается каротин.

Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.

Лизосомы

Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри – комплекс ферментов.

Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.

Комплекс Гольджи

Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.

Клеточный центр

Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей – двух маленьких телец.

Выполняет важную функцию для деления клетки.

Клеточные включения

Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.

Запасные питательные вещества, которые используются для жизнедеятельности клетки.

Органоиды движения

Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).

Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.

Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим отдельно.

Источник