Меню

Таблица квадратов от 101



Таблица квадратов

Таблица квадратов или таблица возведения чисел во вторую степень. Интерактивная таблица квадратов и изображения таблицы в высоком качестве.

1 2 3 4 5 6 7 8 9
1 4 9 16 25 36 49 64 81
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Таблица квадратов

Теория

Квадрат числа – это результат умножения числа само на себя. Операция вычисления квадрата числа – это частный случай возведения числа в степень, в данном случае во вторую:

Данное выражение читается: «возвести в квадрат число 6» или «6 в квадрате».

Скачать таблицу квадратов

  • Нажмите на картинку чтобы посмотреть в увеличенном виде.
  • Нажмите на надпись «скачать», чтобы сохранить картинку на свой компьютер. Изображение будет с высоким разрешением и в хорошем качестве.

Источник

Таблица квадратов чисел от 1 до 100

Таблицу квадратов используют ученики в школе для обучения, а также инженеры, проектировщики, архитекторы, конструкторы, ученые различных областей науки в научных и инженерных расчетах и все жители Земли в быту ежедневно.

1 2 = 1
2 2 = 4
3 2 = 9
4 2 = 16
5 2 = 25
6 2 = 36
7 2 = 49
8 2 = 64
9 2 = 81
10 2 = 100
11 2 = 121
12 2 = 144
13 2 = 169
14 2 = 196
15 2 = 225
16 2 = 256
17 2 = 289
18 2 = 324
19 2 = 361
20 2 = 400

21 2 = 441
22 2 = 484
23 2 = 529
24 2 = 576
25 2 = 625
26 2 = 676
27 2 = 729
28 2 = 784
29 2 = 841
30 2 = 900
31 2 = 961
32 2 = 1024
33 2 = 1089
34 2 = 1156
35 2 = 1225
36 2 = 1296
37 2 = 1369
38 2 = 1444
39 2 = 1521
40 2 = 1600
41 2 = 1681
42 2 = 1764
43 2 = 1849
44 2 = 1936
45 2 = 2025
46 2 = 2116
47 2 = 2209
48 2 = 2304
49 2 = 2401
50 2 = 2500
51 2 = 2601
52 2 = 2704
53 2 = 2809
54 2 = 2916
55 2 = 3025
56 2 = 3136
57 2 = 3249
58 2 = 3364
59 2 = 3481
60 2 = 3600
61 2 = 3721
62 2 = 3844
63 2 = 3969
64 2 = 4096
65 2 = 4225
66 2 = 4356
67 2 = 4489
68 2 = 4624
69 2 = 4761
70 2 = 4900
71 2 = 5041
72 2 = 5184
73 2 = 5329
74 2 = 5476
75 2 = 5625
76 2 = 5776
77 2 = 5929
78 2 = 6084
79 2 = 6241
80 2 = 6400
81 2 = 6561
82 2 = 6724
83 2 = 6889
84 2 = 7056
85 2 = 7225
86 2 = 7396
87 2 = 7569
88 2 = 7744
89 2 = 7921
90 2 = 8100
91 2 = 8281
92 2 = 8464
93 2 = 8649
94 2 = 8836
95 2 = 9025
96 2 = 9216
97 2 = 9409
98 2 = 9604
99 2 = 9801
100 2 = 10000

скачать таблицу квадратов чисел для распечатки

Таблица квадратов чисел необходима для математических расчетов.

На этой странице представлена таблица квадратов чисел от 1 до 100. Таблица применяется для обучения школьников методу счета и для прикладных расчетов в быту и на производстве.

Источник

Таблица квадратов от 101

Вы можете помочь проекту, переведя любую сумму на один из этих кошельков.

Таблица квадратов, это таблица, содержащая числа возведенные во вторую степень, то есть в квадрат. На данной странице предоставлена таблица квадратов от 1 до 100.
Таблица квадратов от 1 до 50

1² = 1
2² = 4
3² = 9
4² = 16
5² = 25
6² = 36
7² = 49
8² = 64
9² = 81
10² = 100

11² = 121
12² = 144
13² = 169
14² = 196
15² = 225
16² = 256
17² = 289
18² = 324
19² = 361
20² = 400

21² = 441
22² = 484
23² = 529
24² = 576
25² = 625
26² = 676
27² = 729
28² = 784
29² = 841
30² = 900

31² = 961
32² = 1024
33² = 1089
34² = 1156
35² = 1225
36² = 1296
37² = 1369
38² = 1444
39² = 1521
40² = 1600

41² = 1681
42² = 1764
43² = 1849
44² = 1936
45² = 2025
46² = 2116
47² = 2209
48² = 2304
49² = 2401
50² = 2500

Таблица квадратов от 51 до 100

51² = 2601
52² = 2704
53² = 2809
54² = 2916
55² = 3025
56² = 3136
57² = 3249
58² = 3364
59² = 3481
60² = 3600

61² = 3721
62² = 3844
63² = 3969
64² = 4096
65² = 4225
66² = 4356
67² = 4489
68² = 4624
69² = 4761
70² = 4900

71² = 5041
72² = 5184
73² = 5329
74² = 5476
75² = 5625
76² = 5776
77² = 5929
78² = 6084
79² = 6241
80² = 6400

81² = 6561
82² = 6724
83² = 6889
84² = 7056
85² = 7225
86² = 7396
87² = 7569
88² = 7744
89² = 7921
90² = 8100

91² = 8281
92² = 8464
93² = 8649
94² = 8836
95² = 9025
96² = 9216
97² = 9409
98² = 9604
99² = 9801
100² = 10000

Если по какой-то причине вас не устраивает таблица квадратов или нужное вам число выходит за рамки таблицы, вы можете воспользоваться калькулятором степеней. Небольшой совет по поводу больших таблиц. Таблица квадратов к счастью достаточно компактна, но если вам попадется большая таблица квадратов , воспользуйтесь клавишей f3 для поиска нужного вам числа.

Таблица квадратовможет иметь вот такой вид.

Таблица квадратов аж до 1000.

Полагаю школьникам большая таблица квадратов без надобности, но студентам, может пригодиться.

Таблица квадратов до 1000, сделана в флеш формате, рекомендую отключить флеш блокировщик.

Источник

Желательно помнить:

Квадраты чисел от 1 до 25

Конечно, необязательно зубрить столбики цифр, два числа всегда можно перемножить на бумаге или воспользоваться калькулятором. Но, чем больше значений вы будете помнить наизусть, тем быстрее будете решать простые примеры. Экономить время экзамена для более сложных заданий, это очень важно. А еще важнее «узнавать в лицо» квадраты, чтобы догадаться какие из формул сокращенного умножения можно применить.

Например, чем отличаются эти два выражения x 2 − 259 и x 2 − 529 ?
Тем, что первое плохо раскладывается на множители, а второе хорошо:

А как об этом догадаться, если не знать, являются ли 259 и 529 квадратами целых чисел?

Итак, учим. В следующей таблице числа расположены обычным образом — по возрастанию в столбике.

Таблица квадратов, упорядоченная по возрастанию

1 2 = 1 6 2 = 36 11 2 = 121 16 2 = 256 21 2 = 441
2 2 = 4 7 2 = 49 12 2 = 144 17 2 = 289 22 2 = 484
3 2 = 9 8 2 = 64 13 2 = 169 18 2 = 324 23 2 = 529
4 2 = 16 9 2 = 81 14 2 = 196 19 2 = 361 24 2 = 576
5 2 = 25 10 2 = 100 15 2 = 225 20 2 = 400 25 2 = 625

Если считаете, что выучили таблицу, хотя бы в первом приближении, то проверьте, как это повлияло на ваш устный счет.

Квадратные корни

Прежде чем переходить к заучиванию значений корней, давайте еще раз посмотрим на таблицу квадратов. Обратите внимание на то, что результаты всегда заканчиваются цифрами 1, 4, 5, 6, 9, 0 и никогда не заканчиваются цифрами 2, 3, 7, 8. Причём, 1-цу в конце дают числа, заканчивающиеся на 1 или 9, 4-ку дают 2 или 8, 9-ку дают 3 или 7, 6-ку дают 4 или 6. Если же число было кратным 5, то при возведении в квадрат последние две цифры 00 или 25.

Таблица квадратов, упорядоченная по последней цифре

1 2 = 1 2 2 = 4 3 2 = 9 4 2 = 16 5 2 = 25
9 2 = 81 8 2 = 64 7 2 = 49 6 2 = 36 10 2 = 100
11 2 = 121 12 2 = 144 13 2 = 169 14 2 = 196 15 2 = 225
19 2 = 361 18 2 = 324 17 2 = 289 16 2 = 256 20 2 = 400
21 2 = 441 22 2 = 484 23 2 = 529 24 2 = 576 25 2 = 625

Если вы запомните этот вариант таблицы квадратов, то таблицу корней, фактически, можно не учить. Вы легко будете подбирать «претендента» на значение корня и быстро проверять его умножением. Для разнообразия таблицу корней упорядочим по убыванию.

Все три верхние таблицы надо учить вместе, а проверять взразброс.

Степени чисел 2, 3 и 5

Помнить значения степеней часто встречающихся чисел важно для быстрого решения показательных и логарифмических уравнений, неравенств и систем. Более того, если вам, например, число 81 ничего «не говорит» о том, что оно степень 3-ки, то вы и не догадаетесь, что это есть именно показательное или логарифмическое уравнение, неравенство .
Кроме того, степени двойки особенно важно знать любителям компьютера, и тем, кто хочет лучше знать информатику, и тем, кто просто желает «полноценно» использовать своё свободное время, играя в компьютерные игры. Помните, что наши самые умные компьютеры умеют считать только до 2-ух? «Раз» = 0 — нет сигнала, «два» = 1 — есть сигнал.

Таблица степеней

2 0 = 1 2 6 = 64 3 0 = 1 5 0 = 1
2 1 = 2 2 7 = 128 3 1 = 3 5 1 = 5
2 2 = 4 2 8 = 256 3 2 = 9 5 2 = 25
2 3 = 8 2 9 = 512 3 3 = 27 5 3 = 125
2 4 = 16 2 10 = 1 024 3 4 = 81 5 4 = 625
2 5 = 32 2 20 = 1 048 576 3 5 = 243 5 5 = 3 025

Обратите внимание:
2 0 байта = 1 байт;
2 10 байта = 1024 байта = 1 килобайт;
2 20 байта = 1048576 байта = 1024 килобайта = 1 мегабайт;
2 30 байта = 1073741824 байта = 1048576 килобайт = 1024 мегабайта = 1 гигабайт.

В отличие от компьютера, человек умеет считать до 10. У нас самая распространенная система счисления — десятичная. Поэтому степени десятки самые простые, я даже не стала помещать их в таблице. Сколько нулей после (или до) единицы — такая и степень.

Логарифмы

Поэтому, если вы уже выучили таблицу степеней, то с таблицей логарифмов проблем быть не должно. Только давайте вспомним обозначения:

  • обычное — logax,
    по определению получается, если y = logax, то a y = x ;
  • десятичный логарифм — lgx,
    это то же самое, что log10x, просто логарифм по «любимому» основанию получил «уменьшительное прозвище»;
  • натуральный логарифм — lnx,
    то же самое, что logex, этот логарифм любят ученые-экспериментаторы, поэтому ему тоже дали «уменьшительное прозвище».
Таблица логарифмов

lg1 = 0 lg0,1 = −1 log24 = 2 log39 = 2 log525 = 2 ln2 ≈0,7
lg10 = 1 lg0,01 = −2 log28 = 3 log327 = 3 log5125 = 3 ln3 ≈1,1
lg100 = 2 lg0,001 = −3 log216 = 4 log381 = 4 log5625 = 4 ln10 ≈2,3
lg1000 = 3 lg0,0001 = −4 log232 = 5 log3243 = 5 log53025 = 5

Натуральный логарифм показывает в какую степень нужно возвести иррациональное число e, чтобы получить x. Поскольку иррациональные числа бесконечны, учить их трудно, а иногда и бессмысленно. Минимум, который нужно помнить, потому что часто встречается, помещен в последней таблице. Здесь значения натурального логарифма даны, скорее для справки, чем для запоминания. Десятичный логарифм, как и положено, самый легкий — просто считаем нули.

Значения тригонометрических функций для основных углов

Функция Угол α
30° 45° 60° 90°
π/6 π/4 π/3 π/2
sinα 1/2 √2 _ /2 √3 _ /2 1
cosα 1 √3 _ /2 √2 _ /2 1/2
tgα √3 _ /3 1 √3 _
ctgα √3 _ 1 √3 _ /3

Если Вам тяжело запомнить все значения из этой таблицы, то выучите только значения для sinα. Строка для функции cosα содержит эти же величины, но в обратном порядке. Значения tgα всегда можно вычислить по формуле sinα/cosα, а значения ctgα – как 1/tgα.
Или параллельно с заучиванием значений функций для основных углов поработайте с тригонометрическим кругом.

Простые числа в пределах 100

Если число имеет только два делителя — само число и единица, то оно называется простым. Например, 19 делится без остатка только на 19 и на 1: 19/19 = 1 и 19/1 = 19. Ответ на вопрос, зачем нужно знать простые числа, также прост — чтобы не делать бесплодных попыток найти несуществующие делители.

Таблица простых чисел

2 11 23 31 41 53 61 71 83 97
3 13 29 37 43 59 67 73 89
5 17 47 79
7 19

Обратите внимание, числа из каждого десятка расположены в одном столбике. Рекомендую так и запоминать. Постепенно. Сначала до 20, потом до 30. и, наконец, в последнем десятке только число 97.

Постоянные

В школьной математике широко используются два иррациональных числа π и e. Особенно часто втречается число π и его доли. Например, в тригонометрии угол в π/3 радиана соответствует углу 60°. Чаще всего во время вычислений мы не используем значения этих чисел, а только их символьные обозначения. Обычно, так же записываем ответ. Но при выборе корней, при решении неравенств, при любом сравнении, требуются хотя бы приблизительные численные значения. Придётся запомнить.

Таблица значений, включающих π или e

π ≈ 3,1416 π/2 ≈ 1,5708 e ≈ 2,7182
2π ≈ 6,2832 π/3 ≈ 1,0472 e 2 ≈ 7,3890
3π ≈ 9,4248 π/4 ≈ 0,7854 e ≈ 1,6487 −
4π ≈ 12,5663 π 2 ≈ 9,8696

Рекомендуемая литература: компактные справочные материалы, например, такие, как справочник «Математика» В.А. Гусева и А.Г. Мордковича или брошюра «Как готовиться к экзамену по математике» Ивлиевой E.Г.

Есть вопросы? пожелания? замечания?
Обращайтесь —
mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте гиперссылку.

Источник

Таблица квадратов натуральных чисел от 1 до 100

Таблица квадратов и таблица степеней.

Таблица квадратов представляет собой числа, которые возведены во вторую степень. Она используется для упрощения расчетов при возведении чисел во вторую степень.

Как пользоваться таблицей квадратов по схеме:

Чтобы возвести число в квадрат, нужно выбрать десятку и единицу числа, которое необходимо возвести во вторую степень, и на их пересечении будет число, которое получается за счет умножения этого числа на себя.

Например: рассмотрим на картинке ниже число 1849. Оно получилось за счет умножения числа 43 на 43 (43 во второй степени), в котором “4”- это десятка, а “3” – единица.

Или другой пример: число 4356 получилось за счет умножения числа 66 на 66 (66 во второй степени), в котором “6” сбоку – это десятка, а “6” сверху – единица.

Таблица квадратов:

Таблица квадратов натуральных чисел

Вторую степень называют “квадратом числа”. При этом умножение числа самого на себя происходит один раз (a · a).

Квадратное число в геометрическом представлении может выглядеть, как квадрат . Например, число 9 – можно представить в виде квадрата из 9 точек, где стороны квадрата будут составлять по 3 точки.

Возведение в степень:

Возведение в степень – алгебраическое действие, при котором происходит умножение числа самого на себя столько раз, сколько указано в показателе.

Число в степени можно обозначить записью a n , где a – основание, n – показатель. Чтобы найти произведение n множителей, каждый из которых равен а, нужно возвести число a в степень n.

Пример: 3 2 (три во второй степени) = 3 · 3 = 9, или

3 3 (три в третьей степени) = 3 · 3 · 3 = 27.

Таблица степеней:

Свойства степеней:

Произведение степеней. При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n

6 2 · 6 4 = 6 2+4 = 6 6

Частное степеней. При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

a m / a n = a m – n

6 4 / 6 2 = 6 4 – 2 = 6 2

Возведение степени в степень. При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(6 4 ) 6 = 6 4 · 6 = 6 24

Степень произведения. При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b) n = a n · b n

(6 · 6) 3 = 6 3 · 6 3

Степень частного (дроби). Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй. При возведении в степень дроби нужно возвести в степень и числитель, и знаменатель.

(a / b) n = a n / b n

(6 / 6) 3 = 6 3 / 6 3

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Справочники

Мировая экономика

Востребованные технологии

  • Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (106 328)
  • Экономика Второй индустриализации России (102 279)
  • Программа искусственного интеллекта ЭЛИС (26 693)
  • Метан, получение, свойства, химические реакции (22 703)
  • Этилен (этен), получение, свойства, химические реакции (21 334)
  • Природный газ, свойства, химический состав, добыча и применение (20 187)
  • Крахмал, свойства, получение и применение (19 807)
  • Целлюлоза, свойства, получение и применение (18 444)
  • Прямоугольный треугольник, свойства, признаки и формулы (18 026)
  • Пропилен (пропен), получение, свойства, химические реакции (17 947)

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

О Второй индустриализации

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Источник

Читайте также:  Три фундаментальные проблемы рыночной экономики