Меню

Таблицы истинности логика доказательства



Таблица истинности

Инструкция . При вводе с клавиатуры используйте следующие обозначения:

Клавиша Оператор
! ¬ Отрицание (НЕ)
| | Штрих Шеффера (И-НЕ)
# Стрелка Пирса (ИЛИ-НЕ)
* & Конъюнкция (И)
+ v Дизъюнкция (ИЛИ)
^ Исключающее ИЛИ, сумма по модулю 2 (XOR)
@ Импликация (ЕСЛИ-ТО)
% Обратная импликация
= ≡ (

bc необходимо ввести так: a*b*c+a*b=c+a=b*c
Для ввода данных в виде логической схемы используйте этот сервис.

Правила ввода логической функции

  1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
  2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
  3. Максимальное количество переменных равно 10 .

Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики — алгебры логики. В алгебре логики можно выделить три основные логические функции: «НЕ» (отрицание), «И» (конъюнкция), «ИЛИ» (дизъюнкция).
Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
Если определены не все значения, функция называется частично определённой.
Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
Для представления функции алгебры логики используется следующие способы:

  • словесное описание – это форма, которая используется на начальном этапе проектирования имеет условное представление.
  • описание функции алгебры логики в виде таблицы истинности.
  • описание функции алгебры логики в виде алгебраического выражения: используется две алгебраические формы ФАЛ:
    а) ДНФ – дизъюнктивная нормальная форма – это логическая сумма элементарных логических произведений. ДНФ получается из таблицы истинности по следующему алгоритму или правилу:
    1) в таблице выбираются те строки переменных для которых функция на выходе =1 .
    2) для каждой строки переменных записывается логическое произведение; причём переменные =0 записываются с инверсией.
    3) полученное произведение логически суммируется.
    Fднф= X 123 ∨ Х1 x 2Х3 ∨ Х1Х2 x 3 ∨ Х1Х2Х3
    ДНФ называется совершенной, если все переменные имеют одинаковый ранг или порядок, т.е. в каждое произведение обязательно должны включаться все переменные в прямом или инверсном виде.
    б) КНФ – конъюнктивная нормальна форма – это логическое произведение элементарных логических сумм.
    КНФ может быть получена из таблицы истинности по следующему алгоритму:
    1) выбираем наборы переменных для которых функция на выходе =0
    2) для каждого набора переменных записываем элементарную логическую сумму, причём переменные =1 записываются с инверсией.
    3) логически перемножаются полученные суммы.
    Fскнф=(X1 V X2 V X3) ∧ (X1 V X2 V X 3) ∧ (X1 V X 2 V X3) ∧ ( X 1 V X2 V X3)
    КНФ называется совершенной, если все переменные имеют одинаковый ранг.

По алгебраической форме можно построить схему логического устройства, используя логические элементы.

Рисунок1- Схема логического устройства

Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможных логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

Источник

Информатика

План урока:

Способы решения задач по логике

Многие задачи можно решить, используя инструменты алгебры логики. Чтобы получить результат, можно пойти 3 путями:

  • рассуждая над условием;
  • решая логические операции;
  • используя таблицы истинности.

Логический подход подразумевает перевод условия из естественного языка на язык символов, схем и формул. Для такой формализации высказываний нужно выполнить ряд шагов.

Этапы решения логических задач:

  • Разобраться с условием на естественном языке, выделив простые высказывания, и дать им символьные обозначения (латиница).
  • Записать условие в виде формулы. Решить ее поэтапно, упрощая, учитывая приоритеты (( ), ¬, &, V).
  • Просчитать формулы строчно или при помощи таблиц истинности, учитывая законы алгебры логики.
  • Проверить, соответствует ли полученный результат условию задачи.

Табличный способ – этапы, особенности

Таблица истинности – табличное выражение результата логических операций для каждого отдельного набора значений переменных.

Такие таблицы позволяют абстрагироваться от маловажной информации, сосредоточиться только на связях между исходными данными, над происходящими процессами. Таким образом, человек может абстрагироваться от непонятной для него информации, решать неспецифические задачи.

Метод таблиц

Чтобы использовать таблицы истинности, необходимо формализовать условие, то есть отойти от деталей задачи, обозначая первоначальную информацию при помощи букв и цифр 0 и 1.

Существует общий алгоритм построения таблиц:

  • Определить число логических значений/переменных (n) в примере.
  • Установить вид, число и тип операций. Важно заранее определить очередность действий, выразить это при помощи скобок.
  • Полученные данные позволяют рассчитать сколько нужно столбцов – это сумма числа переменных и операций.
  • Нарисовать таблицу, заполнить шапку, записав обозначение переменных и выбранные действия.
  • Определить, сколько существует наборов логических переменных (т.е. число строчек) по формуле m = 2 n + 1 (шапка).
  • Заполнить столбцы, вписав наборы значений логических переменных (0 или 1).
  • Записать результаты логических операций, указанных в шапке для каждой совокупности значений.
  • Сделать выводы на основании полученных результатов.

Если необходимо перебрать все значения простых выражений, то для задач:

  • с 2-мя переменными может быть только 4 набора логических переменных;

1 tablicy istinnosti

Если словесно описывать все эти комбинаций, на каждый из примеров понадобится десятки строк текста.

Обязательно учитывают приоритет операций:

  • Указанные в скобках.
  • Отрицание.
  • Логическая конъюнкция чисел.
  • Дизъюнкция.
  • Строгая дизъюнкция.
  • Импликация.
  • Эквивалентность.

Обозначение логических операций:

2 tablicy istinnosti

Сравнение методов решения

Метод рассуждений

Он заключается в пошаговом анализе условий с промежуточными выводами на каждом этапе. Выполняется анализ таблицы истинности каждого логического выражения.

Пример №1.

Андрей, Владимир, Георгий и Дмитрий живут на одной улице, они соседи. Они работают по таким специальностям: гитарист, плотник, егерь и стоматолог.

  • дом плотника правее егеря;
  • стоматолог проживает левее егеря;
  • дом гитариста с самого краю;
  • стоматолог живет рядом с гитаристом;
  • Владимир не гитарист, и его дом не соседствует с гитаристом;
  • дома Дмитрия и егеря соседние;
  • здание, в котором прописан Андрей, правее стоматолога;
  • между домами Андрея и Дмитрия один дом.

Чтобы рассуждать было проще, добавим изображение зданий, присвоим им номера:

3 tablicy istinnosti

Но стоматолог живет левее егеря, а правее егеря – плотник. Получается, что дом гитариста не может быть последним, а дом стоматолога не может быть предпоследними. То есть, егерь живет в предпоследнем доме:

4 tablicy istinnosti

Между домами Андрея и Дмитрия стоит один дом, значит, дом Андрея не может быть предпоследним, получается номер – 4, что автоматом исключает проживание там Дмитрия и Владимира.

5 tablicy istinnosti

Условие задачи заняло 2 предложения, а рассуждений получилось на 2 страницы.

Такой подход лучше не использовать, если условие сложное или много данных.

Табличный метод

Более удачным подходом к решению задач с большим количеством данных (несколько множеств), считается табличный, или графический (диаграммы).

Чтобы построить таблицу истинности логических выражений, следует:

  • Разбить задачу на простейшие утверждения, которые обозначить символами (большие буквы латинского алфавита).
  • Записать условие задачи, как составное выражение из символов логических операций.
  • Нарисовать таблицу истинности для полученных данных.
  • Выбрать такой вариант, при котором полученные значения подходят под условие.
  • Проверить соответствие выбранного варианта и условия задачи.

Чтобы преобразовывать условие задачи в логические выражения и операции, удобно пользоваться такой сводной таблицей истинности логических операций:

6 tablicy istinnosti

Рассмотрим тот же пример.

7 tablicy istinnosti

Определяем, что только гитарист может жить в первом доме, далее смотрим на заметки и условия и получаем таких жителей:

8 tablicy istinnosti

9 tablicy istinnosti

Метод компактнее, для некоторых задач нагляднее.

Построение таблиц истинности для различных типов задач

Несмотря на многообразие задач, многие условия повторяются, если оставить сухие формулы, не вникая в имена, места, профессии. Разобравшись с примером один раз, можно решать аналогичные задачи без труда. Рассмотрим несколько любопытных заданий, решив при помощи логически.

Пример 2.

Известно, что если первый студент летал в Англию на стажировку, то и второй тоже летал, но неправда, что если летал третий, то и второй.

Разобьём условие на 3 простые высказывания, присвоим им буквенные обозначения:

А — «Первый студент летал в Англию»;

В — «Второй студент летал в Англию»;

С — «Третий студент летал в Англию».

Запишем выясненные данные при помощи логических операций:

10 tablicy istinnosti

Пример 3.

Есть три 8-ых класса (А, В, С), которые соревнуются между собой за средний бал. Учителя в начале года сделали такие предположения:

  • Если А получит максимальный бал, то максимальный бал получат Ви С.
  • А и С получат или не получат максимальный бал одновременно.
  • Необходимым условием получения высшего бала С класса является получение высшего бала В классом.

По завершении года оказалось, что 2 предсказания оказались верными, а одно – ошибочным.

Выясним, какие же классы добились высшего бала.

Разбиваем условие задачи на элементарные высказывания:

А – «А добьется высшего бала»;

В – «В добьется высшего бала»;

С – «С добьется высшего бала».

Запишем логические операции, описанные в примере:

11 tablicy istinnosti

Мы заполнили таблицу истинности для всех возможных значений исходных данных. В примере говорилось, что только 2 утверждения в конце года казались истинными, а 1- ложным. Такому условию отвечает 3-я строка в таблице.

Пример 4.

Во время знакомства девушка, любительница загадок, сказала, что ее имя узнать легко:

  • последняя – гласная (Х1);
  • или первая буква согласная (Х2)
  • вторая – согласная (Х3).

Предложенные имена: Арина, Артур, Кэтрин, София.

Решим задачу, используя таблицу.

Сначала решим пошагово, выполняя операции по приоритету:

12 tablicy istinnosti

Указанному условию соответствует первое имя.

Пример 5.

Попробуем решать задачи, в которые нет четких высказываний, истинных или ложных. В них половина информации, правда, половина – ложь, при этом неизвестно, какая именно. Под такой тип задач можно подставить любое условие, но научившись решать его, можно разобраться со всеми аналогичными.

Известно, что в олимпиаде по химии участвовали 4 ученицы 8 класса: Марина, Света, Саша и Галя. Они заняли первые 4 места. Какое место заняла каждая из девочек, если есть их высказывания о победителях, но в них лишь половина информации правдива – первая или вторая половина предложения.

Маша Марина: «Саша заняла второе место, а Света – первое».

Полина Света: «Нет, это не так, Саша – победительница, а Галя, – на втором месте».

Ольга Саша: «Зачем вы всех путаете? Третье место за Мариной, а Света – на четвертом месте».

Составляем таблица для перебора вариантов. Правду обозначаем «1», ложь – «0».

Берем любое (Марины) утверждение и принимаем его первую часть за правду. Значит, Саша – 2 место, тогда Света не 1-ое (вторая половина фразы – ложь), остальных девочек на 2 место ставим «0».

13 tablicy istinnosti

Берем утверждение второй девочки. Так как Саша не может быть победительницей, то в этой фразе первая часть – ложь, а вторая должна быть истинной. Но в нем и вторая часть – неверна (второе место за Сашей, мы так приняли в начале).Уже на второй фразе получается противоречие всему.

14 tablicy istinnosti

Итог: Победительницей олимпиады стала Светлана, на втором месте – Галина, на третьем – Марина, на последнем из четырех – Александра.

Построение электронных схем, реализующих логические операции

Если рассмотреть электросхемы с точки зрения логики, особенно компьютерные, то их также можно описать при помощи «1» и «0» – электричество идет или не идет по проводам.

Попробуем нарисовать логические элементы схемы питания лампочки для нескольких простых операций.

Электросхема с конъюнктором

15 tablicy istinnosti

Рассмотрим все варианты:

  • Все контакты включены, тогда источник света горит.
  • Первый контакт в положении «выключено» – свет не горит.
  • Второй контакт выключен – лампа не светит.
  • Все контакты отключены – свет не горит.

Заключение – эта электрическая цепь реализует операцию «И».

Дизъюнктор, схема электропитания

16 tablicy istinnosti

Рассмотрим этот вид электрической цепочки:

  • Все контакты включены – лампа горит.
  • Первый контакт включен, второй выключен – свет горит.
  • Обратная ситуация – выключен первый, включен второй – лампа светится.
  • Все контакты выключены – света нет.

Заключение – такой вид электросхем соответствует логической операции «ИЛИ».

Инвертор в электросхемах

17 tablicy istinnosti

В этой схеме переключатель не ручной, а автоматический. Здесь процесс обратный – когда ток не идет, контакты замыкаются, горит свет. Если же в сеть подается электричество, пластинка размыкается вследствие электромагнитной индукции, и сеть разъединяется – света нет.

Заключение: схема соответствует логической операции «НЕ».

Умение читать и решать логические операции, строить соответствующие электросхемы, позволяет создавать иерархически более сложные конструкции, которые используются для реализации процессов в современных ПК.

Обозначение логических элементов

18 tablicy istinnosti

Удобно создавать электросхемы в ПО SmartNotebook, которое используется с интерактивной доской.

Источник

Таблицы истинности логика доказательства

План урока:

Способы решения задач по логике

Многие задачи можно решить, используя инструменты алгебры логики. Чтобы получить результат, можно пойти 3 путями:

  • рассуждая над условием;
  • решая логические операции;
  • используя таблицы истинности.

Логический подход подразумевает перевод условия из естественного языка на язык символов, схем и формул. Для такой формализации высказываний нужно выполнить ряд шагов.

Этапы решения логических задач:

  • Разобраться с условием на естественном языке, выделив простые высказывания, и дать им символьные обозначения (латиница).
  • Записать условие в виде формулы. Решить ее поэтапно, упрощая, учитывая приоритеты (( ), ¬, &, V).
  • Просчитать формулы строчно или при помощи таблиц истинности, учитывая законы алгебры логики.
  • Проверить, соответствует ли полученный результат условию задачи.

Табличный способ – этапы, особенности

Таблица истинности – табличное выражение результата логических операций для каждого отдельного набора значений переменных.

Такие таблицы позволяют абстрагироваться от маловажной информации, сосредоточиться только на связях между исходными данными, над происходящими процессами. Таким образом, человек может абстрагироваться от непонятной для него информации, решать неспецифические задачи.

Метод таблиц

Чтобы использовать таблицы истинности, необходимо формализовать условие, то есть отойти от деталей задачи, обозначая первоначальную информацию при помощи букв и цифр 0 и 1.

Существует общий алгоритм построения таблиц:

  • Определить число логических значений/переменных (n) в примере.
  • Установить вид, число и тип операций. Важно заранее определить очередность действий, выразить это при помощи скобок.
  • Полученные данные позволяют рассчитать сколько нужно столбцов – это сумма числа переменных и операций.
  • Нарисовать таблицу, заполнить шапку, записав обозначение переменных и выбранные действия.
  • Определить, сколько существует наборов логических переменных (т.е. число строчек) по формуле m = 2 n + 1 (шапка).
  • Заполнить столбцы, вписав наборы значений логических переменных (0 или 1).
  • Записать результаты логических операций, указанных в шапке для каждой совокупности значений.
  • Сделать выводы на основании полученных результатов.

Если необходимо перебрать все значения простых выражений, то для задач:

  • с 2-мя переменными может быть только 4 набора логических переменных;

1 tablicy istinnosti

Если словесно описывать все эти комбинаций, на каждый из примеров понадобится десятки строк текста.

Обязательно учитывают приоритет операций:

  • Указанные в скобках.
  • Отрицание.
  • Логическая конъюнкция чисел.
  • Дизъюнкция.
  • Строгая дизъюнкция.
  • Импликация.
  • Эквивалентность.

Обозначение логических операций:

2 tablicy istinnosti

Сравнение методов решения

Метод рассуждений

Он заключается в пошаговом анализе условий с промежуточными выводами на каждом этапе. Выполняется анализ таблицы истинности каждого логического выражения.

Пример №1.

Андрей, Владимир, Георгий и Дмитрий живут на одной улице, они соседи. Они работают по таким специальностям: гитарист, плотник, егерь и стоматолог.

  • дом плотника правее егеря;
  • стоматолог проживает левее егеря;
  • дом гитариста с самого краю;
  • стоматолог живет рядом с гитаристом;
  • Владимир не гитарист, и его дом не соседствует с гитаристом;
  • дома Дмитрия и егеря соседние;
  • здание, в котором прописан Андрей, правее стоматолога;
  • между домами Андрея и Дмитрия один дом.

Чтобы рассуждать было проще, добавим изображение зданий, присвоим им номера:

3 tablicy istinnosti

Но стоматолог живет левее егеря, а правее егеря – плотник. Получается, что дом гитариста не может быть последним, а дом стоматолога не может быть предпоследними. То есть, егерь живет в предпоследнем доме:

4 tablicy istinnosti

Между домами Андрея и Дмитрия стоит один дом, значит, дом Андрея не может быть предпоследним, получается номер – 4, что автоматом исключает проживание там Дмитрия и Владимира.

5 tablicy istinnosti

Условие задачи заняло 2 предложения, а рассуждений получилось на 2 страницы.

Такой подход лучше не использовать, если условие сложное или много данных.

Табличный метод

Более удачным подходом к решению задач с большим количеством данных (несколько множеств), считается табличный, или графический (диаграммы).

Чтобы построить таблицу истинности логических выражений, следует:

  • Разбить задачу на простейшие утверждения, которые обозначить символами (большие буквы латинского алфавита).
  • Записать условие задачи, как составное выражение из символов логических операций.
  • Нарисовать таблицу истинности для полученных данных.
  • Выбрать такой вариант, при котором полученные значения подходят под условие.
  • Проверить соответствие выбранного варианта и условия задачи.

Чтобы преобразовывать условие задачи в логические выражения и операции, удобно пользоваться такой сводной таблицей истинности логических операций:

6 tablicy istinnosti

Рассмотрим тот же пример.

7 tablicy istinnosti

Определяем, что только гитарист может жить в первом доме, далее смотрим на заметки и условия и получаем таких жителей:

8 tablicy istinnosti

9 tablicy istinnosti

Метод компактнее, для некоторых задач нагляднее.

Построение таблиц истинности для различных типов задач

Несмотря на многообразие задач, многие условия повторяются, если оставить сухие формулы, не вникая в имена, места, профессии. Разобравшись с примером один раз, можно решать аналогичные задачи без труда. Рассмотрим несколько любопытных заданий, решив при помощи логически.

Пример 2.

Известно, что если первый студент летал в Англию на стажировку, то и второй тоже летал, но неправда, что если летал третий, то и второй.

Разобьём условие на 3 простые высказывания, присвоим им буквенные обозначения:

А — «Первый студент летал в Англию»;

В — «Второй студент летал в Англию»;

С — «Третий студент летал в Англию».

Запишем выясненные данные при помощи логических операций:

10 tablicy istinnosti

Пример 3.

Есть три 8-ых класса (А, В, С), которые соревнуются между собой за средний бал. Учителя в начале года сделали такие предположения:

  • Если А получит максимальный бал, то максимальный бал получат Ви С.
  • А и С получат или не получат максимальный бал одновременно.
  • Необходимым условием получения высшего бала С класса является получение высшего бала В классом.

По завершении года оказалось, что 2 предсказания оказались верными, а одно – ошибочным.

Выясним, какие же классы добились высшего бала.

Разбиваем условие задачи на элементарные высказывания:

А – «А добьется высшего бала»;

В – «В добьется высшего бала»;

С – «С добьется высшего бала».

Запишем логические операции, описанные в примере:

11 tablicy istinnosti

Мы заполнили таблицу истинности для всех возможных значений исходных данных. В примере говорилось, что только 2 утверждения в конце года казались истинными, а 1- ложным. Такому условию отвечает 3-я строка в таблице.

Пример 4.

Во время знакомства девушка, любительница загадок, сказала, что ее имя узнать легко:

  • последняя – гласная (Х1);
  • или первая буква согласная (Х2)
  • вторая – согласная (Х3).

Предложенные имена: Арина, Артур, Кэтрин, София.

Решим задачу, используя таблицу.

Сначала решим пошагово, выполняя операции по приоритету:

12 tablicy istinnosti

Указанному условию соответствует первое имя.

Пример 5.

Попробуем решать задачи, в которые нет четких высказываний, истинных или ложных. В них половина информации, правда, половина – ложь, при этом неизвестно, какая именно. Под такой тип задач можно подставить любое условие, но научившись решать его, можно разобраться со всеми аналогичными.

Известно, что в олимпиаде по химии участвовали 4 ученицы 8 класса: Марина, Света, Саша и Галя. Они заняли первые 4 места. Какое место заняла каждая из девочек, если есть их высказывания о победителях, но в них лишь половина информации правдива – первая или вторая половина предложения.

Маша Марина: «Саша заняла второе место, а Света – первое».

Полина Света: «Нет, это не так, Саша – победительница, а Галя, – на втором месте».

Ольга Саша: «Зачем вы всех путаете? Третье место за Мариной, а Света – на четвертом месте».

Составляем таблица для перебора вариантов. Правду обозначаем «1», ложь – «0».

Берем любое (Марины) утверждение и принимаем его первую часть за правду. Значит, Саша – 2 место, тогда Света не 1-ое (вторая половина фразы – ложь), остальных девочек на 2 место ставим «0».

13 tablicy istinnosti

Берем утверждение второй девочки. Так как Саша не может быть победительницей, то в этой фразе первая часть – ложь, а вторая должна быть истинной. Но в нем и вторая часть – неверна (второе место за Сашей, мы так приняли в начале).Уже на второй фразе получается противоречие всему.

14 tablicy istinnosti

Итог: Победительницей олимпиады стала Светлана, на втором месте – Галина, на третьем – Марина, на последнем из четырех – Александра.

Построение электронных схем, реализующих логические операции

Если рассмотреть электросхемы с точки зрения логики, особенно компьютерные, то их также можно описать при помощи «1» и «0» – электричество идет или не идет по проводам.

Попробуем нарисовать логические элементы схемы питания лампочки для нескольких простых операций.

Электросхема с конъюнктором

15 tablicy istinnosti

Рассмотрим все варианты:

  • Все контакты включены, тогда источник света горит.
  • Первый контакт в положении «выключено» – свет не горит.
  • Второй контакт выключен – лампа не светит.
  • Все контакты отключены – свет не горит.

Заключение – эта электрическая цепь реализует операцию «И».

Дизъюнктор, схема электропитания

16 tablicy istinnosti

Рассмотрим этот вид электрической цепочки:

  • Все контакты включены – лампа горит.
  • Первый контакт включен, второй выключен – свет горит.
  • Обратная ситуация – выключен первый, включен второй – лампа светится.
  • Все контакты выключены – света нет.

Заключение – такой вид электросхем соответствует логической операции «ИЛИ».

Инвертор в электросхемах

17 tablicy istinnosti

В этой схеме переключатель не ручной, а автоматический. Здесь процесс обратный – когда ток не идет, контакты замыкаются, горит свет. Если же в сеть подается электричество, пластинка размыкается вследствие электромагнитной индукции, и сеть разъединяется – света нет.

Заключение: схема соответствует логической операции «НЕ».

Умение читать и решать логические операции, строить соответствующие электросхемы, позволяет создавать иерархически более сложные конструкции, которые используются для реализации процессов в современных ПК.

Обозначение логических элементов

18 tablicy istinnosti

Удобно создавать электросхемы в ПО SmartNotebook, которое используется с интерактивной доской.

Источник

Таблица истинности логических операций — алгоритм построения

Определения и понятия

Под таблицей истинности понимают свод значений, которые может принять высказывание при сочетании различных входящих комбинаций. Другими словами, каждому набору функций или сигналам, присутствующим на входе чего-либо, соответствует строго определённые показатели на выходе. Все значения, являющиеся всевозможными высказываниями, называют логическими выражениями. Если в таблице последние столбцы логичных выражений идентичны, то рассматриваемый объект считается равносильным.

Любое выражение можно описать формулой, в которую будут включаться переменные, характеризующие состояния, и обозначающие функции знаки логических операций. Поэтому используя язык математики, в частности, алгебры, любое сложное высказывание можно разделить на несколько простых, а затем объединить логической связью.

Обычно значениями истинности описывают логическую функцию, у которой показатели параметров определяют верность. Раздел математики рассматривающий их на правдивость или ложность называется булевым. В 1854 году английский учёный Джордж Буль предложил метод, позволяющий проводить анализ классов и высказываний. Согласно ему, любое значение может принимать одно из двух состояний — истина или ложь.

Эти состояния принято обозначать арабскими цифрами один либо ноль или словами true и false. Это возможно из-за того, что для математики важна только истинность высказываний, а конкретное содержание второстепенно. Простые высказывания принято считать логическими переменными, а сложные — функциями логики. Выражения для упрощения записи обозначают латинскими буквами A, B, C.

Применение двух цифр подчёркивает соответствие между двоичной системой счисления и математической логикой. В итоге с помощью последней стало удобным описывать работу цифровых схем радиоэлектронной аппаратуры, алгоритмы в программировании, проводить синтез и анализ результата выполнения операций.

Суждение о правильности построения таблиц истинности для логических выражений основано на учёте всех переменных и операций, последовательно выполняющихся в рассматриваемой функции. Обычно для начертания используют 2 n +1 строк, где n обозначает количество входных переменных, и n+m столбцов, m — число значений на выходе.

Виды логических операций

В качестве наименьшей единицы измерения объёма данных принято считать бит. В него заносится одно из двух значений — ложь (0) или правда (1). Каждая ячейка, соответствующая биту, находится лишь в одном из этих состояний. Существуют определённые операции, используемые для действий с ячейками:

  1. AND (И) — применяется для сравнения двух бит. Результатом действия будет единица, но лишь в том случае, если значения двух ячеек одинаковое. При остальных вариантах итог будет иметь устойчивое нулевое состояние.
  2. OR (ИЛИ) — по сути, операция обратная AND. Результат становится нулевым, если содержимое двух сравниваемых бит одинаковое. В остальных случаях он равный единице.
  3. XOR (ИЛИ) — если значения, содержащиеся в двух сравниваемых битах противоположны, при выполнении логического действия результат будет равный единице. Во всех остальных случаях он будет равняться нулю.
  4. NOT (НЕ) — действие, используемое для одного бита. Если первоначально ячейка находилась в нулевом состоянии, то после выполнения над ней операции она станет равной единице и наоборот. Фактические это логическая инверсия.

Эти операции являются основными элементами при составлении таблиц истинности и получения возможного результата. На основании их построена алгебра Буля. Некоторые элементы получаются путём объединения нескольких операций. Так, существует состояние: NAND (И-НЕ) и NOR (ИЛИ-НЕ). Первый элемент является инверсией операции «И», а второй — «ИЛИ». На основании рассмотренных операторов строится работа всех цифровых интегральных схем.

В информатике существует своя терминология, обозначающая то или иное логическое действие. Так, AND называют операцией конъюнкции, OR — дизъюнкции, XOR — сложение по модулю 2, NOT — отрицание. Задача инженера при анализе схем или алгоритма сводится к выполнению булевой арифметики и упрощению выражений. Для этого используют различные правила и положения не требующих доказательства.

Аксиомы и законы

Построение таблиц в удобной форме позволяет определить, когда определённое действие или высказывание принимает верное значение, а в каком случае нет. В верхней строчке записывают логическую форму высказывания, а в столбцах — истинные значения. Некоторые комбинации высказываний всегда будут истинными или ложными, независимо от содержания. Поэтому и были сформулированы следующие законы:

  1. Торжества. Записывается в виде утверждения: А = А. В этом случае таблица будет состоять из двух комбинаций: ложной и правдивой. Бинарная логическая связка «Если А, то А» является материальной импликацией. Для такого варианта всегда можно сказать, что А есть А. Этот закон обозначает то, что нельзя подменять одно понятие другим, иначе возникнут логические ошибки.
  2. Противоречия. Согласно ему, утверждение, что А и НЕ-А, неверно: A & A = 0. Другими словами, если А истинное значение, то его отрицание не может быть ложным. То есть их перемножение будет всегда фальшивой операцией. Этот закон довольно часто применяется для упрощения сложных логических суждений.
  3. Третьего исключённого. Закон записывается в виде A v A = 1 и обозначает, что в один и тот же момент высказывание может быть только правдивым или ложным. То есть третьего не дано.

Эти три закона фундаментальны. Без их соблюдения сделать любое правильное утверждение невозможно.

Для решения логических задач с помощью таблиц истинности используют различные формулы, соответствующие разного вида операциям. Одно из них логическое умножение (конъюнкция). В этом случае считается, что функция истинная лишь тогда, когда оба выражения являются верными: F = A & B. Другое логическое сложение (дизъюнкция). Оно гласит, что если оба выражения ложны, то и логическая функция будет неверной.

Кроме того, используется закон:

  • инверсии (отрицания) — если логическое высказывание истинно, то отрицание его будет ложным выражением;
  • импликации (следования) — для всегда истинного сложного логического выражения ложь будет тогда, когда из верности следует отрицание;
  • эквивалентности (равнозначности) — выражение будет истинным лишь тогда, когда оба высказывания имеют одинаковое значение.

При построении таблиц нужно придерживаться установленного порядка выполнения упрощения операций. Вначале считают инверсию и конъюнкцию, а затем дизъюнкцию, импликацию и эквиваленцию. При изменении же порядка выполнения действий в описании логических операций используют скобки.

Алгоритм построения

Таблицы истинности показывают, какой вид может принять выражение при различных входящих в него значениях переменных. Для того чтобы их правильно построить и выполнить вычисление логического выражения нужно придерживаться установленного алгоритма. Построение таблиц выполняют в следующей последовательности:

  • подсчитывают количество переменных n;
  • вычисляют число строк для будущей таблицы используя формулу m = 2n+1;
  • определяют число логических операций;
  • устанавливают порядок выполнения операций в соответствии со скобками и приоритетами;
  • строят таблицу с указанием столбцов и наборов значений, заданных логических операций;
  • заполняют оставшиеся ячейки в таблице.

Для заполнения таблиц нужно упрощать выражения с учётом последовательности выполнения операций. При этом учитывать, что если значение какого-то из аргументов функции в соответствующей строке таблицы будет равное нулю, то записывать его нужно в виде отрицания.

Пример задания

Пусть необходимо построить таблицу для логического выражения F = (A → B) * (A + B). Эта формула состоит из двух логических переменных A и B и нескольких операций. Начинают построение с определения строк. Используя формулу 2n+1 для рассматриваемого примера можно установить, что их число будет: x = 22 + 1 = 5.

Теперь следует определить число столбцов. Для этого используется формула, в которой учитывается количество переменных и операций. Последние можно просто посчитать, сложив количество разных знаков, используемых в записи формулы. Но правильней сначала расставить порядок операций, а затем посчитать. Согласно порядку действия над операциями их нумерацию можно представить в следующей очерёдности:

  1. Импликация в первой скобке.
  2. Инверсия во второй скобке переменной A.
  3. Отрицание во второй скобке неизвестной B.
  4. Сложение во втором члене.
  5. Конъюнкция.

В итоге получится, что столбцов будет: Y = 2 + 5 = 7. Теперь нужно построить таблицу 7Х5. В шапку первого и второго столбца вписывают переменные, а затем операции над ними. Затем в строках, соответствующих A и B нужно записать всё, что с ними может произойти. В итоге останется только правильно посчитать последний столбец.

Для этого нужно использовать законы. Необходимо выполнить логическое умножение значений в скобках. Первой и второй строчке будет соответствовать операция произведения один на один, что в ответе даст единицу. Третьей и четвёртой — ноль на один, что в итоге даст ноль. Последний столбец является главным для рассматриваемой логической функции. По нему можно узнать значение логической функции для любых форм переменных A и B.

Это довольно простая задача, содержащая всего две переменных. Но в реальности, например, в программировании, их может быть намного больше. Решать такие задания методом перебора проблематично. Поэтому при решении сложных примеров функцию вначале пытаются упростить.

Например, заданно выражение (x + y + z) * (x + y). По сути, оно записано в совершенно нормальной конъюнктивной форме. Но для приведения его к этому виду нужно, чтобы во втором выражении стояла z. Для того чтобы её добавить необходимо обратить внимание на то, что внутри скобок стоит логическое сложение. Поэтому дописав к нему ноль, результат не изменится. Добавить ноль через z можно, как ноль умножить на НЕ z. В итоге получится выражение (x + y + z) * (x + y + z + z), для которого, используя алгоритм составить таблицу уже не так и сложно.

Вычисления онлайн

В интернете есть сервисы, автоматически строящие таблицы истинности. Такие сайты предлагают свои услуги бесплатно и доступны даже тем, кто слабо ориентируется в теме. С их помощью можно находить таблицы для довольно сложных выражений, решение которых требует скрупулёзности в расчёте. В основе онлайн-вычислений заложены принципы логических законов, поэтому за достоверность результата можно не переживать. Тем более расчёт занимает совсем небольшое количество времени.

Для того чтобы воспользоваться сайтами-калькуляторами пользователю необходимо знать обозначение операций, иметь подключение к интернету и установленный веб-обозреватель, поддерживающий Flash-технологию. Регистрацию, указание личных данных сервисы, предлагающие такого рода услуги, не требуют.

Из различных порталов можно отметить три наиболее популярных калькулятора:

  1. Allcalc.
  2. Programforyou.
  3. Uchim.

Эти сайты имеют интуитивно понятный интерфейс и что довольно полезно, на своих страницах содержат краткую теорию, используемую для составления таблиц истинности и даже примеры решений.

Источник

Читайте также:  Правила гигиены лежачих больных часть I