Меню

Транскрипция в хроматине как проходить сквозь стены

Таблица цепь днк репликация транскрипция

При синтезе «неинформационной» молекулы (например, гликогена) чистота конечного продукта обеспечивается специальным ферментом. Для фермента характерна субстратная специфичность, то есть его активный центр способен присоединять только молекулу UDP-глюкозы и нередуцирующий конец молекулы гликогена, которая должна быть удлинена. Таким образом, активный центр фермента можно рассматривать как «матрицу», поскольку между молекулами субстрата осуществляется комплементарная подгонка.

При синтезе макромолекул ДНК, РНК или белков один активный центр фермента не в состоянии обеспечить специфическую последовательность четырёх кодирующих единиц. Он может связывать между собой только один или несколько «строительных блоков», а нуклеиновые кислоты содержат в своём составе тысячи нуклеотидов. Поэтому природа пошла здесь по другому пути: матрицей для синтеза цепи молекулы ДНК служит другая цепь ДНК.

Транскрипция ДНК в ходе деления клеток начинается с разделения двух цепей, каждая из которых становится матрицей, синтезирующей нуклеотидную последовательность новых цепей. Хеликаза, топоизомераза и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований. Репликация катализуется несколькими ДНК-полимеразами, а транскрипция – ферментом РНК-полимеразой. После репликации дочерние спирали закручиваются обратно уже без затрат энергии и каких-либо ферментов.

Сравнительно неплохо изучен процесс репликации и транскрипции ДНК бактерий. Их ДНК способна реплицироваться, не распрямляясь в линейную молекулу, то есть в кольцевой форме. Процесс, по-видимому, начинается на определённом участке кольца и идёт сразу в двух направлениях (в одном – непрерывно, во втором – фрагментарно с последующим «склеиванием» фрагментов). Инициация репликации находится под контролем клеточной регуляции. Скорость репликации ДНК составляет около 45 000 нуклеотидов в минуту; таким образом, родительская вилка расплетается со скоростью 4500 об/мин.

Частота ошибок при ДНК-репликации не превышает 1 на 10 9 –10 10 нуклеотидов. Столь высокая степень точности воспроизведения информации определяется не только комплементарностью нуклеотидов, но и действием ДНК-полимераз, которые способны распознать ошибку в образующемся коде и исправить её. Следует заметить, что точность воспроизведения РНК и белков в тысячи раз ниже. Это связано с тем, что транскрипция и трансляция, затрагивающие только одну клетку, – не столь жизненно важные процессы, как репликация, которая определяет будущее всего вида.

Репликация эукариот при такой же схеме длилась бы несколько месяцев (скорость движения репликативных вилок составляет всего микрометр в минуту). Поэтому в ДНК эукариот процесс начинается одновременно в сотнях и тысячах точек. Все хромосомы в клетке должны реплицироваться одновременно, и одновременно в клетке работают многие тысячи вилок.

Между репликацией и транскрипцией есть существенная разница: в первом случае копируется вся молекула ДНК, во втором, как правило, только отдельные гены. Минимальная длина и-РНК определяется длиной полипептидной цепи, для которой она предназначена. В идентификации последовательностей нуклеотидов, обозначающих начало и конец синтезирующих РНК генов, ещё много неясного.

Молекулы р-РНК и т-РНК образуются из более длинных предшественников – гетерогенных ядерных РНК (гя-РНК). Длина гя-РНК увеличена за счет нетранслирующихся интронов, которых в конечных РНК уже нет. Интроны удаляются при помощи малой ядерной РНК. мя-РНК комплементарна нуклеотидам на концах интронов – она временно соединяется с ними, стягивая интрон в петлю. Концы кодирующих фрагментов соединяются, после чего интрон благополучно удаляется из цепи.

Некоторые РНК-содержащие вирусы животных при помощи РНК-зависимой ДНК-полимеразы способны синтезировать ДНК, комплементарную по отношению к вирусной РНК. Она встраивается в геном эукариотической клетки, где может многие поколения оставаться в скрытом состоянии. При определённых условиях (например, воздействии канцерогенов) вирусные гены могут активироваться, и здоровые клетки превратятся в раковые.

Источник

Процесс биосинтеза белка в клетке этапы, трансляция, транскрипция, генетический код (Таблица)

Биосинтез белка — это процесс состоящий из множества стадий синтеза и созревания белков, который протекает в живых организмах. В биосинтезе белка выделяют два основных этапа: синтез полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул и-РНК и т-РНК (трансляция), и посттрансляционные модификации полипептидной цепи. Процесс биосинтеза белка требует значительных затрат энергии. Синтез каждого конкретного белка определяется участком ДНК (геном) с определенной последовательностью нуклеотидов.

obs 58

Наследственная информация, заключенная в ДНК, передается по наследству с помощью репликации (удвоение). Генетическая информация, записанная в виде последовательности нуклеотидов ДНК, в процессе транскрипции переписывается в нуклеотидную последовательность РНК, которая, в свою очередь, определяет последовательность аминокислот соответствующей белковой молекулы. Из-за ядерной оболочки в клетках человека (и других эукариот) процессы транскрипции и трансляции проходят в разных структурах и разделены во времени.

Биосинтез белка этапы таблица

Этапы биосинтеза белка

Описание протекания этапов

Синтез и-РНК (происходит В ядре)

Транскрипция — это синтез молекулы РНК с последовательностью оснований, комплементарной участку
ДНК, информация с гена ДНК переписывается на и-РНК. Молекула и-РНК несет информацию одного гена. Ген — отрезок ДНК, состоящий из нескольких сот нуклеотидов, содержащий информацию о структуре одного белка. При этом с одного гена может «переписываться» множество молекул и-РНК. Они подвергаются в ядре процессингу, после чего транспортируются из ядра в цитоплазму, где выполняют свои функции.

В клетках существует три типа РНК:

Информационная (и-РНК) — переносит информацию о нуклеотидной последовательности ДНК к рибосомам

Рибосомная (р-РНК) — в комплексе с рибосомными белками образует малые и большие субъединицы рибосом. Из этих субъединиц в присутствии цитоплазматических факторов инициации и зрелой и-РНК собираются рибосомы.

Транспортные (т-РНК) — выполняют двойную функцию: они присоединяют молекулу аминокислоты, транспортируют ее к рибосоме и узнают триплет, соответствующий этой аминокислоте в молекуле и-РНК.

Соединение аминокислот с молекулами т-РНК (в цитоплазме)

Т-РНК состоит из 70-80 нуклеотидов. В цепочке т-РНК имеются нуклеотидные звенья, комплементарные друг другу. При сближении они слипаются, образуя структуру, напоминающую лист клевера. К «черешку присоединяется» определенная аминокислота, а на «верхушке» кодовый триплет нуклеотидов, соответетвующий определенной аминокислоте. Для каждой из 20 аминокислот существует своя т-РНК.

Читайте также:  Бесплатный LibreOffice на русском языке

«Сборка белка» (происходит в рибосомах)

и-РНК из ядра направляется к рибосомам, на одной молекуле и-РНК одновременно располагаются несколько рибосом. Этот комплекс называется полирибосомой, что обеспечивает одновременный синтез большого количества одинаковых молекул белка. т-РНК с прикрепленными к ним аминокислотами подходят к рибосомам и своим кодовым концом дотрагиваются до триплета нуклеотидов и-РНК, которая проходит в этот момент через рибосому. В это время противоположный конец т-РНК с аминокислотой попадает в место «сборки белка» и, если кодовый триплет т-РНК окажется комплементарным триплету и-РНК, находящемуся в данный момент в рибосоме, аминокислота отделяется от т-РНК и попадает в состав белка, а рибосома делает «шаг» на один триплет по и-РНК . Отдав аминокислоту, т-РНК покидает рибосому, ей на смену приходит другая, с иной аминокислотой; составляется следующее звено в строящейся белковой молекуле. Трансляция — перенос информации о структуре белка (последовательность расположенных аминокислот) с гена ДНК на и-РНК. Когда синтез молекулы белка закончен, рибосома сходит с и-РНК, образовавшийся белок поступает в ЭПС и через нее в другие части клетки, а рибосома поступает на другую и-РНК и участвует в синтезе другого белка

Кодон — три азотистых основания (триплет) в РНК или ДНК.

Схема процесса биосинтеза белка

Процесса биосинтеза белка этапы схема

Генетический код

ДНК состоит из генов (специфические последовательности оснований, кодирующие конкретные белки), регуляторов («включают» и «выключают» гены) и некодирующих последовательностей — больших отрезков с неясной функцией (избыточная ДНК).

Генетический код, основан на триплетах, или кодонах, — три нуклеотида определяют присоединение к полипептидной цепи одной аминокислоты

Свойства генетического кода

Свойства генетического кода

Генетический код, основан на триплетах, или кодонах, — три нуклеотида определяют присоединение к полипептидной цепи одной аминокислоты

Большинство аминокислот кодируются более чем одним триплетом. Одна и та же аминокислота может кодироваться разными триплетами, но первые два нуклеотида для них всегда одинаковы. Всего в генетическом коде есть 64 кодона, три из которых (UAA, UGA и UAG) являются стоп-кодонами, завершающими синтез полипептидной цепи.

Генетический код не перекрывается, хотя в нем отсутствуют знаки, отделяющие один триплет от другого

у всех живых организмов, а также вирусы и бактерии, одинаковые кодоны (триплеты) кодируют одинаковые аминокислоты.

На таблице ниже показаны положение азотистого основания в кодоне. Триплетные комбинации азотистых оснований и-РНК (U, C, A, G) определяют аминокислоты. Звездочкой обозначены стартовые кодоны. Триплеты ochre, amber и opal действуют как стоп-кодоны.

Схема таблица генетический код

_______________

Источник информации:

1. Общая биология / Левитин М. Г. — 2005.

2. Биология для поступающих в вузы / Г.Л. Билич, В.А. Крыжановский. — 2008.

3. Биохимия в схемах и таблицах / И. В. Семак — Минск — 2011.

Источник



Таблица цепь днк репликация транскрипция

Для генов, кодирующих белки, движение информации от гена до полипептида включает несколько шагов. Инициация транскрипции гена происходит под влиянием промоторов и других управляющих элементов, а также специфических белков, известных как факторы транскрипции, взаимодействующих с определенными последовательностями в пределах управляющих областей гена и определяющих пространственную и временную схему экспрессии гена. Транскрипция гена начинается со «стартовой» точки в хромосомной ДНК в начале 5′-транскрибируемой, но не транслируемой области.

Процесс транскрипции идет непрерывно по ходу кодирующей последовательности вдоль хромосомы, проходя от нескольких сотен пар оснований до более миллиона пар, захватывая как интроны, так и экзоны, и завершаясь на конце кодирующей последовательности. После модификации обоих 5′ и З’-концов первичной копии РНК части, соответствующие нитронам, удаляются, а сегменты, соответствующие экзонам, сращиваются вместе.

После сплайсинга (сращивания) РНК результирующая мРНК (содержащая центральный сегмент, соответствующий кодирующей части гена), перемещается из ядра в цитоплазму клетки, где мРНК транслируется в аминокислотную последовательность закодированного полипептида. Каждая составляющая этого сложного пути подвержена ошибкам и мутациям, которые создают помехи и вызывают множество наследственных заболеваний.

Транскрипция

Транскрипция белок-кодирующего гена РНК-полимеразой-II (одна из нескольких классов РНК-полимераз) начинается в стартовом сайте транскрипции, в точке 5′-нетранслируемой области, соответствующей 5′-концу конечной РНК. Синтез первичной копии РНК идет по направлению от 5′ к З’-концу, поскольку нить считываемого гена, который служит шаблоном для синтеза РНК, действительно считывается в направлении от 3′ к 5′-концу в соответствии с направлением фосфатных связей дезоксирибозы.

Поскольку синтезированная РНК соответствует расположению и последовательности нуклеотидов (с заменой урацила на тимин) 5′-3′-нити ДНК, такую нить ДНК часто называют кодирующей или комплементарной ДНК (кДНК). 3′-5′-нить ДНК носит название некодирующей или антисмысловой. Транскрипция осуществляется как для интронных, так и для экзонных частей гена, до позиции в хромосоме, которая записывается на 3′-конец зрелой мРНК. Неизвестно, заканчивается ли транскрипция в определенной точке терминации на 3′-конце.

Затем в области 5′-конца первичной копии РНК происходит кэпирование, а в специфической точке 3′-конца — расщепление. Расщепление заканчивается присоединением к 3′-концевым звеньям множества остатков аденозина — поли-(А), что увеличивает стабильность полученной РНК. Позиция точки полиаденилирования частично определяется последовательностью AAUAAA (или вариантами этой последовательности), обычно обнаруживаемой в 3′-нетранслируемой части копии РНК. Описанные посттрансляционные модификации, как и процесс сплайсинга РНК, происходят в ядре.

Полностью обработанная РНК, теперь называющаяся мРНК, перемещается в цитоплазму, где происходит трансляция.

экспрессия генов

Трансляция и генетический код

В цитоплазме мРНК транслируется в белок под действием молекул тРНК, специфичной для каждой конкретной аминокислоты. Эти замечательные молекулы, каждая всего от 70 до 100 нуклеотидов длиной, добавляют к растущей полипептидной цепи определенную аминокислоту в соответствии с шаблоном мРНК. Белковый синтез происходит в рибосомах, макромолекулярных комплексах, состоящих из рРНК (кодируемой генами 18S и 28S) и нескольких десятков рибосомальных белков.

Читайте также:  Угол косинус 60 градусов таблица

Ключ трансляции — код, который связывает специфическую аминокислоту с комбинацией из трех смежных оснований на мРНК. Каждое сочетание трех оснований составляет кодон, специфичный для конкретной аминокислоты. В теории существует почти бесконечное множество вариантов размещения оснований вдоль полинуклеотидной цепи. В каждом положении может быть один из четырех нуклеотидов (А, Т, С или G); таким образом, для трех оснований есть 43 или 64 возможные комбинации триплетов. Эти 64 кодона и составляют генетический код.

Поскольку на 20 аминокислот приходится 64 возможных кодона, некоторые аминокислоты определяются более чем одним кодоном; поэтому генетический код называют вырожденным. Например, основание в третьей позиции триплета часто может быть или пуриновым (А или G), или пиримидиновым (Т или С), а в некоторых случаях любое из четырех оснований не изменяет смысл сообщения. Лейцин и аргинин определяются сразу шестью кодонами. Только метионин и триптофан кодируются единственным, уникальным триплетом. Три кодона называются стоп-кодонами (или нонсенс-кодонами), поскольку они определяют завершение трансляции мРНК.

Трансляция зрелой мРНК всегда начинается с кодона, определяющего метионин. Следовательно, метионин — всегда первая аминокислота каждой полипептидной цепи, хотя обычно он удаляется до завершения синтеза белка. Кодон метионина (или кодон-инициатор, AUG) устанавливает рамку считывания мРНК; каждый последующий кодон считывается поочередно, указывая аминокислотную последовательность белка.

Молекулярные связи между кодонами и аминокислотами обеспечивают специфические молекулы тРНК. Конкретный участок (сайт) на каждой тРНК формирует антикодон из трех оснований, комплементарный (дополнительный) к специфическому кодону на мРНК. Соединение между кодоном и антикодоном приводит соответствующую аминокислоту на следующую позицию в рибосоме для присоединения с образованием пептидной связи к карбоксильному концу растущей полипептидной цепи. Рибосома затем скользит вдоль мРНК точно на три основания, захватывая следующий кодон для опознавания другой тРНК со следующей аминокислотой.
Таким образом, белки синтезируются, начиная от аминогруппы к карбоксильной группе, что соответствует трансляции мРНК в направлении от 5′-конца к 3′-концу.

Как упоминалось ранее, трансляция заканчивается, когда в той же рамке считывания, что и кодон-инициатор, встречается стоп-кодон (UGA, UAA или UAG). Стоп-кодоны в любой из других неиспользованных рамок считывания не читаются и, следовательно, не оказывают эффекта на трансляцию. Завершенный полипептид отделяется от рибосомы, и она становится доступной для начала синтеза другого белка.

Посттрансляционные события — процессинг

Множество белков проходят существенную посттрансляционную модификацию. Полипептидная цепь, первичный продукт трансляции, скручивается и складывается в специфическую трехмерную структуру, определяемую аминокислотной последовательностью цепи.

Две и более полипептидные цепи, продукты одного или различных генов, могут объединяться, формируя один готовый белковый комплекс. Например, две цепи b-глобина и две цепи а-глобина нековалентно объединяются, формируя тетрамер молекулы гемоглобина. Белковые продукты также могут быть модифицированы химически, например добавлением в специфических местах метильных или фосфатных групп или углеводов.

Такие модификации могут иметь значимое влияние на функцию или количество модифицированного белка. Другие модификации могут включать расщепление белка с потерей специфических аминокислотных последовательностей после того, как они выполнили свою функцию, направив белок в правильную позицию в пределах клетки (например, белки, которые функционируют в пределах ядра или митохондрий) или разделение белковых молекул на меньшие полипептидные цепи.

Например, две цепи, формирующие готовый инсулин, содержащие одна 21, а вторая 30 аминокислот, первоначально представляют собой части проинсулина — первичного продукта трансляции из 82 аминокислот.

Транскрипция митохондриального генома

В предшествующих разделах описаны основы экспрессии генов, содержащихся в ядерном геноме. Митохондриальный геном имеет отличающуюся систему транскрипции и белкового синтеза. Для транскрипции митохондриального генома используется специализированная РНК-полимераза, закодированная в ядерном геноме, содержащая две взаимосвязанные последовательности промотора, для каждой нити кольцевой митохондриальной хромосомы. Каждая нить транскрибируется полностью, а полученные копии затем обрабатываются, порождая различные митохондриальные мРНК, тРНК и рРНК.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Транскрипция в хроматине: как проходить сквозь стены

Перед РНК-полимеразой стоит сложная задача реализации генетической информации путем осуществления транскрипции. На своем пути фермент встречает массу препятствий. ДНК находится в комплексе с белками и плотно упакована, образуя нуклеосомы, которые создают барьер для полимераз, но несут важные регуляторные сигналы. Так как же транскрипционная машина проходит через нуклеосомы?

Гистоновый код

Молекула ДНК упакована в ядре плотно. Она, объединяясь с белками-гистонами, образует хроматин, который имеет определенную структуру: его единицей является нуклеосома, состоящая из восьми молекул гистонов и намотанной на них ДНК (примерно 160 п.н.). Дополнительный девятый (линкерный) гистон H1 не входит в центральное нуклеосомное «ядро», а фиксирует нить ДНК на поверхности каждой нуклеосомы.

Хроматин находится под чуткой регуляцией многих систем. Он начинает строиться сразу, как только перед делением клетка удваивает свой генетический материал [1]. Изучение его структуры важно не только с теоретической точки зрения: известно, что в раковых клетках нарушено строение хромосом, увеличено ядрышко (немембранное образование в ядре клетки, легко различимое с помощью микроскопии), и вскрытие причин этих аномалий позволит разработать новые терапевтические подходы. Интересно, что с изменением размера ядрышка связывают колебания активности белков, облегчающих транскрипцию в хроматине, — например, белкового комплекса FACT [2]. О преодолении сложностей транскрипции нуклеосомной ДНК и пойдет речь дальше.

Нуклеосомная ДНК 1,65 раза оборачивается вокруг белкового ядра нуклеосомы, которое состоит из гетеродимеров гистонов Н2А, Н2В, Н3 и Н4 [3]. N-концы гистонов выходят за пределы такой «катушки» (видно на заглавном рисунке) и играют важную регуляторную роль. На них, как флажки, появляются различные модификации, которые дают сигналы другим молекулам. Набор модификаций представляет собой часть эпигенетического кода — гистоновый код, который участвует в регуляции экспрессии генов. Выделяют сигналы, способствующие транскрипции определенных генов, или, наоборот, препятствующие ей. Некоторые модификации говорят о том, что ДНК в этой зоне нуждается в ремонте (репарации), или о том, что здесь закодирован элемент, который не несет информации о белке, а является регуляторным. Модификации гистонов узнаются, влекут за собой каскады реакций, по необходимости убираются или заменяются на новые. Таким образом, гистоновый код динамичен: он отражает потребности клетки в конкретный момент времени и очень важен для ее нормальной жизнедеятельности.

Читайте также:  Экономика и е роль в жизни общества продолжение

Нуклеосомы преграждают путь РНК-полимеразам

РНК-полимеразы реализуют генетическую информацию, синтезируя РНК на матрице ДНК. Прочитывая ген, они должны получить доступ к каждому нуклеотиду цепи. Однако когда нуклеотидная цепочка находится в составе нуклеосомы, это затрудняет работу полимеразы. Гистоны связывают те участки ДНК, которые должны быть прочитаны. Для преодоления такого рода препятствия РНК-полимеразы могут «скинуть» гистоны со своего пути, но тогда потеряются и белковые модификации, под регуляцией которых находился ген. Однако существуют и способы преодоления нуклеосом с их сохранением на ДНК. На данный момент описаны оба варианта и, видимо, они сосуществуют в клетке.

Полимераза прошла, нуклеосома осталась, но изменилась

Рисунок 1. U-образная форма нуклеосом в районе активных генов. Трехмерная реконструкция из [5].

Клетки одного организма содержат одинаковый набор генов, но при этом они разные: есть нервные, есть мышечные и т.д. В определенном типе клеток активны характерные для него гены. РНК-полимераза прочитывает только их, остальные заблокированы и молчат. Нуклеосомы активных генов несут специальные модификации (например, ацетилирование гистонов), есть у них и другие особенности [4, 5, 6]. Нуклеосомы в тех местах, где проходит РНК-полимераза, часто имеют U-образную форму (рис. 1).

Нулеосома в районе активных генов может вообще «раскрываться». То есть ядро из восьми гистонов делится на две части из четырех молекул. «Развернутые» нуклеосомы накапливаются ближе к концу гена [7]. Это может быть обусловлено тем, что РНК-полимераза, расплетая двойную спираль ДНК, создает в ней напряжение. Особенно сильным оно будет в конце гена. Интересно, что после прекращения транскрипции обычная форма нуклеосом восстанавливается [8].

РНК-полимеразы, объединяясь, сметают нуклеосомы

Гены могут быть активны по-разному: с некоторых РНК считывается относительно редко, с некоторых гораздо чаще. В том числе существуют гены, работающие только в определенных тканях. Например, в 85% типов рака активен ген теломеразы — особого белка, который способен достраивать концы хромосом. Это один из механизмов, помогающих клеткам делиться бесконечно при патологии [9].

В случае интенсивной транскрипции гистоны могут терять связь с ДНК, если РНК-полимеразы прочитывают ген одна за другой. Уже после прохода через нуклеосому первой полимеразы часто пара гистонов Н2А–Н2В уходит в раствор (рис. 2), но шанс «выжить» у оставшихся шести гистонов еще есть. А при активной транскрипции, когда две РНК-полимеразы идут прямо друг за другом, с ДНК уходит весь октамер [10]. Интересно, что такие следующие друг за другом ферменты работают более эффективно. Они лучше справляются с тем барьером, который создает нуклеосома. Вторая РНК-полимераза как бы подталкивает первую и не дает ей отступать назад (что иногда случается).

Рисунок 2. Во время транскрипции гистоны могут уходить из состава нуклеосомы. Если на участке ДНК проходит только один раунд транскрипции, то теряются преимущественно гистоны Н2А–Н2В. Если РНК-полимеразы идут друг за другом, то ДНК может полностью высвобождаться. Рисунок из [10], адаптирован.

РНК-полимеразы могут пройти через нуклеосому

Итак, если уровень транскрипции не очень высок, то у нуклеосом есть шанс «выжить». Это влечет за собой возможность сохранения гистоновых модификаций в том же месте хроматина, где они и были раньше, что может быть важно для жизни клетки. Американскими учеными с российскими корнями в 2009 году был предложен механизм прохождения через нуклеосому без ее удаления для РНК-полимеразы II, транскрибирующей большинство генов эукариот [11].

Постулируется, что нуклеосома сохранится, если при расплетении нуклеотидной цепи в каждый момент времени гистоны будут связывать хотя бы часть нуклеосомной ДНК. Как это возможно, если РНК-полимераза должна прочитать все «буквы» без исключения? Оказывается, важнейшим моментом такого механизма является заключение фермента в петлю. То есть возможно перехватывание гистонов цепочкой ДНК. Опытным путем показали, что сначала РНК-полимераза расплетает только часть нуклеосомной ДНК. Затем, когда фермент прочитывает эту свободную от связей с белками часть цепи, она закручивается обратно. В этот момент восстанавливаются связи с гистонами у той ДНК, что уже оказалась позади РНК-полимеразы. Такое состояние в литературе называют нулевой петлей. Затем фермент продолжает свой путь и освобождает от белков вторую половину нуклеосомной ДНК (рис. 3). Важно отметить, что при такой работе системы некоторые гистоны все-таки теряются. Часто из состава нуклеосомы уходит один гетеродимер белков Н2А и Н2В.

Рисунок 3. Механизм «сквозной» транскрипции. 1) РНК-полимераза приближается к нуклеосоме. 2) Фермент «отворачивает» часть нуклеосомной ДНК, освобождая ее от связи с гистонами. 3) РНК-полимераза оказывается в петле, когда восстанавливаются связи ДНК, оставшейся позади фермента, с гистонами. 4) Вторая часть нуклеосомной ДНК расплетается. 5) Когда РНК-полимераза заканчивает транскрипцию нуклеосомной ДНК, последняя восстанавливает свою конформацию. Рисунок из [11].

Итак, нуклеосомы не только помогают компактно уложить цепь ДНК, но и несут важную эпигенетическую информацию. Оказывается, что после транскрипции они могут как пропадать, так и оставаться на прежнем месте. Нуклеосомы могут изменять свою форму, а затем восстанавливать прежнюю. Их судьба в таких процессах, как транскрипция или репликация, представляет большой интерес для науки. Изучение эпигенетики важно для медицины, для понимания развития живых организмов, их поведения и регуляции генома в целом [12]. Накопленные данные уже позволили получить ряд лекарственных препаратов. Они влияют на белки, создающие или убирающие эпигенетические сигналы. Например, такие лекарства используют для лечения лейкозов и лимфом [13].

Источник

Adblock
detector