Задача №3. Таблицы и схемы, поиск оптимального маршрута по таблице и по расписанию.
В своей деятельности человек повсеместно использует модели, то есть создает образ, упрощенную копию того объекта, с которым ему приходится иметь дело.
Модель — это искусственно созданный объект, дающий упрощенное представление о реальном объекте, процессе или явлении, отражающий существенные стороны изучаемого объекта с точки зрения цели моделирования.
Моделирование — это построение моделей, предназначенных для изучения и объектов, процессов или явлений.
Распространенными информационными моделями являются графики, схемы, таблицы, диаграммы. Одним из распространенных видов моделей являются графы. Граф – это один из способов графического едставления информации. Объекты представлены в нем как вершины (узлы), а связи между объектами как ребра (дуги). Т.е. граф – это набор вершин и связывающих их ребер.
Путь в графе – это конечная последовательность вершин, каждая из которых (кроме последней) соединена со следующей ребром. Граф может содержать циклы (первая вершина пути может совпадать с последней).
Обычно в задачах используют взвешенный граф, т.е. граф, в котором с каждым ребром связано число (вес). Например, расстояние, стоимость и т.д.
Граф может задаваться таблицей, в которой на пересечении строки и столбца с наименованиями вершин записано числовое значение (вес) ребра, соединяющего эти вершины.
Дерево – это граф, не имеющий циклов. В дереве существует один единственный путь между любой парой вершин. Одна из вершин дерева (корень) не имеет входящих ребер, все остальные имеют ровно одно входящее ребро. Вершины, у которых нет исходящих ребер, называются листьями.
1. Поиск графа, соответствующего таблице
Пример 1.
В таблице приведена стоимость перевозок между соседними железнодорожными станциями. Укажите схему, соответствующую таблице.
Сравним значения таблицы и схем:
Согласно таблице вершина A должна быть связана с вершинами B (значение 4) и D (значение 5). Т.е. AB=4, AD=5. На схеме значения указаны около соответствующего ребра. Сразу отбрасываем 1),2),3) схемы, т.к. на них AD не равно 5.
Для уверенности проверим все остальные ребра схемы 4): BC=3, BD=6, что совпадает со значениями таблицы. Правильная схема 4).
2. Анализ информации в таблице и графе
Пример 2.
На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).
Так как таблицу и схему рисовали независимо друг от друга, то нумерация населенных пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта В в пункт Е. В ответе запишите целое число – так, как оно указано в таблице.
На графе из вершины В выходит 5 ребер, значит в таблице соответствующий пункт должен иметь дороги в 5 других (строка должна содержать 5 заполненных клеток). Такой пункт в таблице один: П6.
На графе из вершины Е выходит 4 ребра, значит в таблице соответствующий пункт должен иметь дороги в 4 других (строка должна содержать 4 заполненные клетки). Такой пункт в таблице один: П4.
Таким образом, нам нужно найти расстояние между П6 и П4. Согласно таблице оно равно 20.
3. Поиск информации в таблице по условию
Пример 3.
Между четырьмя местными аэропортами: ЛУГОВОЕ, ДЯТЛОВО, НИКИТИНО и ОРЕХОВО, ежедневно выполняются авиарейсы. Приведён фрагмент расписания перелётов между ними:
Путешественник оказался в аэропорту ЛУГОВОЕ в полночь. Определите самое раннее время, когда он может попасть в аэропорт ОРЕХОВО. Считается, что путешественник успевает совершить пересадку в аэропорту, если между временем прилета в этот аэропорт и временем вылета проходит не менее часа.
1) 12:05 2) 12:50 3)12:55 4) 13:30
Решение:
Можно, конечно, решить эту задачу просто глядя на таблицу и перебирая подходящие варианты, но есть риск ошибиться или пропустить нужную строчку. Поэтому рекомендую нарисовать дерево всех возможных путей из аэропорта ЛУГОВОЕ в ОРЕХОВО:
Средняя ветка не подходит, т.к. между прилетом в аэропорт ДЯТЛОВО (11:15) и вылетом из ДЯТЛОВО в ОРЕХОВО (12:00) интервал меньше часа.
Из оставшихся двух выбираем раннее время прилета: 12:55.
Ответ: 3
4. Выбор таблицы по условию
Пример 4.
В таблицах приведена протяженность автомагистралей между соседними населенными пунктами. Если пересечение строки и столбца пусто, то соответствующие населенные пункты не являются соседними. Укажите номер таблицы, для которой выполняется условие «Максимальная протяженность маршрута от пункта C до пункта B не больше 6». Протяженность маршрута складывается из протяженности автомагистралей между соответствующими соседними населенными пунктами. При этом через любой насеченный пункт маршрут должен проходить не более одного раза.
По каждой из схем построим дерево с корнем в точке C и листьями в точке B. При этом нам не нужно строить дерево полностью. Как только найдена ветка с протяженностью больше 6, делаем вывод, что таблица не удовлетворяет указанному условию:
Таблицы 1), 2) и 4) отвергаем уже при анализе первой ветки дерева.
В таблице 3) две ветки вообще не приведут в B, а две другие имеют суммарную длину, не превышающую 6.
5. Поиск кратчайшего пути по таблице
Пример 5.
Между населёнными пунктами A, B, C, D, E, F, Z построены дороги, протяжённость которых приведена в таблице. (Отсутствие числа в таблице означает, что прямой дороги между пунктами нет.)
Определите длину кратчайшего пути между пунктами A и Z (при условии, что передвигаться можно только по построенным дорогам).
1) 13 2) 16 3) 19 4) 21
При решении этой задачи тоже не следует полагаться на простой визуальный анализ таблицы. Чтобы избежать ошибок, построим дерево с корнем в вершине A и листьями в вершине Z. При этом нам не нужно выписывать все ветки. Второй путь из A в С (AC=6) длиннее первого (ABC=5), значит и весь маршрут через него будет длиннее.
Второй путь из C в E (CE=10) длиннее первого (CDE=6), значит и весь маршрут через него будет длиннее.
Нам остается сложить длины всех отрезков и выбрать маршрут с наименьшей длиной.
Это верхняя ветка дерева с длиной 16.
Источник
Решение транспортной задачи
Первым этапом решения транспортной задачи является определение ее типа (открытая или закрытая, или иначе сбалансированная или не сбалансированная). Приближенные методы (методы нахождения опорного плана) позволяют на втором этапе решения за небольшое число шагов получить допустимое, но не всегда оптимальное, решение задачи. К данной группе методов относятся методы:
- вычеркивания (метод двойного предпочтения);
- северо-западного угла;
- минимального элемента;
- аппроксимации Фогеля.
Опорное решение транспортной задачи
Приближенные методы решения транспортной задачи.
Метод вычеркивания (метод двойного предпочтения). Если в строке или столбце таблицы одна занятая клетка, то она не может входить в какой-либо цикл, так как цикл имеет две и только две клетки в каждом столбце. Следовательно, можно вычеркнуть все строки таблицы, содержащие по одной занятой клетке, затем вычеркнуть все столбцы, содержащие по одной занятой клетке, далее вернуться к строкам и продолжить вычеркивание строк и столбцов. Если в результате вычеркивания все строки и столбцы будут вычеркнуты, значит, из занятых клеток таблицы нельзя выделить часть, образующую цикл, и система соответствующих векторов условий является линейно независимой, а решение опорным. Если же после вычеркиваний останется часть клеток, то эти клетки образуют цикл, система соответствующих векторов условий линейно зависима, а решение не является опорным.
Метод «северо-западного угла» состоит в последовательном переборе строк и столбцов транспортной таблицы, начиная с левого столбца и верхней строки, и выписывании максимально возможных отгрузок в соответствующие ячейки таблицы так, чтобы не были превышены заявленные в задаче возможности поставщика или потребности потребителя. На цены доставки в этом методе не обращают внимание, поскольку предполагается дальнейшая оптимизация отгрузок.
Метод «минимального элемента». Отличаясь простотой данный метод все же эффективнее чем, к примеру, метод Северо-западного угла. Кроме того, метод минимального элемента понятен и логичен. Его суть в том, что в транспортной таблице сначала заполняются ячейки с наименьшими тарифами, а потом уже ячейки с большими тарифами. То есть мы выбираем перевозки с минимальной стоимостью доставки груза. Это очевидный и логичный ход. Правда он не всегда приводит к оптимальному плану.
Метод «аппроксимации Фогеля». При методе аппроксимации Фогеля на каждой итерации по всем столбцам и по всем строкам находят разность между двумя записанными в них минимальными тарифами. Эти разности записывают в специально отведенных для этого строке и столбце в таблице условий задачи. Среди указанных разностей выбирают минимальную. В строке (или в столбце), которой данная разность соответствует, определяют минимальный тариф. Клетку, в которой он записан, заполняют на данной итерации.
Источник
Задача таблица стоимости перевозок
Первым этапом решения транспортной задачи является определение ее типа (открытая или закрытая, или иначе сбалансированная или не сбалансированная). Приближенные методы (методы нахождения опорного плана) позволяют на втором этапе решения за небольшое число шагов получить допустимое, но не всегда оптимальное, решение задачи. К данной группе методов относятся методы:
- вычеркивания (метод двойного предпочтения);
- северо-западного угла;
- минимального элемента;
- аппроксимации Фогеля.
Опорное решение транспортной задачи
Приближенные методы решения транспортной задачи.
Метод вычеркивания (метод двойного предпочтения). Если в строке или столбце таблицы одна занятая клетка, то она не может входить в какой-либо цикл, так как цикл имеет две и только две клетки в каждом столбце. Следовательно, можно вычеркнуть все строки таблицы, содержащие по одной занятой клетке, затем вычеркнуть все столбцы, содержащие по одной занятой клетке, далее вернуться к строкам и продолжить вычеркивание строк и столбцов. Если в результате вычеркивания все строки и столбцы будут вычеркнуты, значит, из занятых клеток таблицы нельзя выделить часть, образующую цикл, и система соответствующих векторов условий является линейно независимой, а решение опорным. Если же после вычеркиваний останется часть клеток, то эти клетки образуют цикл, система соответствующих векторов условий линейно зависима, а решение не является опорным.
Метод «северо-западного угла» состоит в последовательном переборе строк и столбцов транспортной таблицы, начиная с левого столбца и верхней строки, и выписывании максимально возможных отгрузок в соответствующие ячейки таблицы так, чтобы не были превышены заявленные в задаче возможности поставщика или потребности потребителя. На цены доставки в этом методе не обращают внимание, поскольку предполагается дальнейшая оптимизация отгрузок.
Метод «минимального элемента». Отличаясь простотой данный метод все же эффективнее чем, к примеру, метод Северо-западного угла. Кроме того, метод минимального элемента понятен и логичен. Его суть в том, что в транспортной таблице сначала заполняются ячейки с наименьшими тарифами, а потом уже ячейки с большими тарифами. То есть мы выбираем перевозки с минимальной стоимостью доставки груза. Это очевидный и логичный ход. Правда он не всегда приводит к оптимальному плану.
Метод «аппроксимации Фогеля». При методе аппроксимации Фогеля на каждой итерации по всем столбцам и по всем строкам находят разность между двумя записанными в них минимальными тарифами. Эти разности записывают в специально отведенных для этого строке и столбце в таблице условий задачи. Среди указанных разностей выбирают минимальную. В строке (или в столбце), которой данная разность соответствует, определяют минимальный тариф. Клетку, в которой он записан, заполняют на данной итерации.
Источник
Учитель информатики
Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.
Таблица стоимости перевозок устроена следующим образом: числа, стоящие на пересечениях строк и столбцов таблиц, означают стоимость перевозок между соответствующими соседними станциями
Таблица стоимости перевозок устроена следующим образом: числа, стоящие на пересечениях строк и столбцов таблиц, означают стоимость перевозок между соответствующими соседними станциями. Если пересечение строки и столбца пусто, то станции не являются соседними. Стоимость перевозок по маршруту складывается из стоимостей перевозок между соседними станциями. Перевозки между населёнными пунктами А, В, С, В, Е осуществляют три компании, представившие стоимость своих услуг в табличной форме. Какая компания обеспечивает минимальную стоимость перевозок из А в В?
Ответ
Для большей наглядности перейдем от таблиц к графам:
Минимальная стоимость у 1 компании
ACB = 3 + 4 = 7
Минимальная стоимость у 2 компании
ACB = 3 + 4 = 7
AECB = 1 + 2 + 4 = 7
Минимальная стоимость у 3 компании
ACB = 3 + 4 = 7
AECB = 4 + 2 + 4 = 10
AEB = 4 + 2 = 6
Ответ:
Третья компания.
Источник